function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def haversine_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float: # CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System # Distance in metres(m) # Equation parameters # Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation flattening = (AXIS_A - AXIS_B) / AXIS_A phi_1 = atan((1 - flattening) * tan(radians(lat1))) phi_2 = atan((1 - flattening) * tan(radians(lat2))) lambda_1 = radians(lon1) lambda_2 = radians(lon2) # Equation sin_sq_phi = sin((phi_2 - phi_1) / 2) sin_sq_lambda = sin((lambda_2 - lambda_1) / 2) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda h_value = sqrt(sin_sq_phi + (cos(phi_1) * cos(phi_2) * sin_sq_lambda)) return 2 * RADIUS * asin(h_value)
geodesy
def optimal_merge_pattern(files: list) -> float: optimal_merge_cost = 0 while len(files) > 1: temp = 0 # Consider two files with minimum cost to be merged for _ in range(2): min_index = files.index(min(files)) temp += files[min_index] files.pop(min_index) files.append(temp) optimal_merge_cost += temp return optimal_merge_cost
greedy_methods
def frac_knapsack(vl, wt, w, n): r = sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True) vl, wt = [i[0] for i in r], [i[1] for i in r] acc = list(accumulate(wt)) k = bisect(acc, w) return ( 0 if k == 0 else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k]) )
greedy_methods
def fractional_knapsack( value: list[int], weight: list[int], capacity: int ) -> tuple[float, list[float]]: index = list(range(len(value))) ratio = [v / w for v, w in zip(value, weight)] index.sort(key=lambda i: ratio[i], reverse=True) max_value: float = 0 fractions: list[float] = [0] * len(value) for i in index: if weight[i] <= capacity: fractions[i] = 1 max_value += value[i] capacity -= weight[i] else: fractions[i] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions
greedy_methods
def bidirectional_dij( source: str, destination: str, graph_forward: dict, graph_backward: dict ) -> int: shortest_path_distance = -1 visited_forward = set() visited_backward = set() cst_fwd = {source: 0} cst_bwd = {destination: 0} parent_forward = {source: None} parent_backward = {destination: None} queue_forward: PriorityQueue[Any] = PriorityQueue() queue_backward: PriorityQueue[Any] = PriorityQueue() shortest_distance = np.inf queue_forward.put((0, source)) queue_backward.put((0, destination)) if source == destination: return 0 while queue_forward and queue_backward: while not queue_forward.empty(): _, v_fwd = queue_forward.get() if v_fwd not in visited_forward: break else: break visited_forward.add(v_fwd) while not queue_backward.empty(): _, v_bwd = queue_backward.get() if v_bwd not in visited_backward: break else: break visited_backward.add(v_bwd) # forward pass and relaxation for nxt_fwd, d_forward in graph_forward[v_fwd]: if nxt_fwd in visited_forward: continue old_cost_f = cst_fwd.get(nxt_fwd, np.inf) new_cost_f = cst_fwd[v_fwd] + d_forward if new_cost_f < old_cost_f: queue_forward.put((new_cost_f, nxt_fwd)) cst_fwd[nxt_fwd] = new_cost_f parent_forward[nxt_fwd] = v_fwd if nxt_fwd in visited_backward: if cst_fwd[v_fwd] + d_forward + cst_bwd[nxt_fwd] < shortest_distance: shortest_distance = cst_fwd[v_fwd] + d_forward + cst_bwd[nxt_fwd] # backward pass and relaxation for nxt_bwd, d_backward in graph_backward[v_bwd]: if nxt_bwd in visited_backward: continue old_cost_b = cst_bwd.get(nxt_bwd, np.inf) new_cost_b = cst_bwd[v_bwd] + d_backward if new_cost_b < old_cost_b: queue_backward.put((new_cost_b, nxt_bwd)) cst_bwd[nxt_bwd] = new_cost_b parent_backward[nxt_bwd] = v_bwd if nxt_bwd in visited_forward: if cst_bwd[v_bwd] + d_backward + cst_fwd[nxt_bwd] < shortest_distance: shortest_distance = cst_bwd[v_bwd] + d_backward + cst_fwd[nxt_bwd] if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: shortest_path_distance = shortest_distance return shortest_path_distance
graphs
def __init__(self, name): self.name = name self.inbound = [] self.outbound = []
graphs
def add_inbound(self, node): self.inbound.append(node)
graphs
def add_outbound(self, node): self.outbound.append(node)
graphs
def __repr__(self): return f"<node={self.name} inbound={self.inbound} outbound={self.outbound}>"
graphs
def page_rank(nodes, limit=3, d=0.85): ranks = {} for node in nodes: ranks[node.name] = 1 outbounds = {} for node in nodes: outbounds[node.name] = len(node.outbound) for i in range(limit): print(f"======= Iteration {i + 1} =======") for _, node in enumerate(nodes): ranks[node.name] = (1 - d) + d * sum( ranks[ib] / outbounds[ib] for ib in node.inbound ) print(ranks)
graphs
def main(): names = list(input("Enter Names of the Nodes: ").split()) nodes = [Node(name) for name in names] for ri, row in enumerate(graph): for ci, col in enumerate(row): if col == 1: nodes[ci].add_inbound(names[ri]) nodes[ri].add_outbound(names[ci]) print("======= Nodes =======") for node in nodes: print(node) page_rank(nodes)
graphs
def bfs_shortest_path(graph: dict, start, goal) -> list[str]: # keep track of explored nodes explored = set() # keep track of all the paths to be checked queue = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue path = queue.pop(0) # get the last node from the path node = path[-1] if node not in explored: neighbours = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: new_path = list(path) new_path.append(neighbour) queue.append(new_path) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(node) # in case there's no path between the 2 nodes return []
graphs
def bfs_shortest_path_distance(graph: dict, start, target) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 queue = [start] visited = set(start) # Keep tab on distances from `start` node. dist = {start: 0, target: -1} while queue: node = queue.pop(0) if node == target: dist[target] = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(adjacent) queue.append(adjacent) dist[adjacent] = dist[node] + 1 return dist[target]
graphs
def __init__(self): self.node_position = []
graphs
def get_position(self, vertex): return self.node_position[vertex]
graphs
def set_position(self, vertex, pos): self.node_position[vertex] = pos
graphs
def top_to_bottom(self, heap, start, size, positions): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: smallest_child = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: smallest_child = 2 * start + 1 else: smallest_child = 2 * start + 2 if heap[smallest_child] < heap[start]: temp, temp1 = heap[smallest_child], positions[smallest_child] heap[smallest_child], positions[smallest_child] = ( heap[start], positions[start], ) heap[start], positions[start] = temp, temp1 temp = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child], self.get_position(positions[start]) ) self.set_position(positions[start], temp) self.top_to_bottom(heap, smallest_child, size, positions)
graphs
def bottom_to_top(self, val, index, heap, position): temp = position[index] while index != 0: parent = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: heap[index] = heap[parent] position[index] = position[parent] self.set_position(position[parent], index) else: heap[index] = val position[index] = temp self.set_position(temp, index) break index = parent else: heap[0] = val position[0] = temp self.set_position(temp, 0)
graphs
def heapify(self, heap, positions): start = len(heap) // 2 - 1 for i in range(start, -1, -1): self.top_to_bottom(heap, i, len(heap), positions)
graphs
def delete_minimum(self, heap, positions): temp = positions[0] heap[0] = sys.maxsize self.top_to_bottom(heap, 0, len(heap), positions) return temp
graphs
def prisms_algorithm(adjacency_list): heap = Heap() visited = [0] * len(adjacency_list) nbr_tv = [-1] * len(adjacency_list) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph distance_tv = [] # Heap of Distance of vertices from their neighboring vertex positions = [] for vertex in range(len(adjacency_list)): distance_tv.append(sys.maxsize) positions.append(vertex) heap.node_position.append(vertex) tree_edges = [] visited[0] = 1 distance_tv[0] = sys.maxsize for neighbor, distance in adjacency_list[0]: nbr_tv[neighbor] = 0 distance_tv[neighbor] = distance heap.heapify(distance_tv, positions) for _ in range(1, len(adjacency_list)): vertex = heap.delete_minimum(distance_tv, positions) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex)) visited[vertex] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(neighbor)] ): distance_tv[heap.get_position(neighbor)] = distance heap.bottom_to_top( distance, heap.get_position(neighbor), distance_tv, positions ) nbr_tv[neighbor] = vertex return tree_edges
graphs
def topology_sort( graph: dict[int, list[int]], vert: int, visited: list[bool] ) -> list[int]: visited[vert] = True order = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(graph, neighbour, visited) order.append(vert) return order
graphs
def find_components( reversed_graph: dict[int, list[int]], vert: int, visited: list[bool] ) -> list[int]: visited[vert] = True component = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(reversed_graph, neighbour, visited) return component
graphs
def dijkstra(graph, start, end): heap = [(0, start)] # cost from start node,end node visited = set() while heap: (cost, u) = heapq.heappop(heap) if u in visited: continue visited.add(u) if u == end: return cost for v, c in graph[u]: if v in visited: continue next_item = cost + c heapq.heappush(heap, (next_item, v)) return -1
graphs
def greedy_min_vertex_cover(graph: dict) -> set[int]: # queue used to store nodes and their rank queue: list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(queue, [-1 * len(value), (key, value)]) # chosen_vertices = set of chosen vertices chosen_vertices = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices argmax = heapq.heappop(queue)[1][0] chosen_vertices.add(argmax) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: index = elem[1][1].index(argmax) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(queue) return chosen_vertices
graphs
def matching_min_vertex_cover(graph: dict) -> set: # chosen_vertices = set of chosen vertices chosen_vertices = set() # edges = list of graph's edges edges = get_edges(graph) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: from_node, to_node = edges.pop() chosen_vertices.add(from_node) chosen_vertices.add(to_node) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(edge) return chosen_vertices
graphs
def get_edges(graph: dict) -> set: edges = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node)) return edges
graphs
def check_cycle(graph: dict) -> bool: # Keep track of visited nodes visited: set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack rec_stk: set[int] = set() return any( node not in visited and depth_first_search(graph, node, visited, rec_stk) for node in graph )
graphs
def depth_first_search(graph: dict, vertex: int, visited: set, rec_stk: set) -> bool: # Mark current node as visited and add to recursion stack visited.add(vertex) rec_stk.add(vertex) for node in graph[vertex]: if node not in visited: if depth_first_search(graph, node, visited, rec_stk): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(vertex) return False
graphs
def dfs(v, c): visited[v] = True color[v] = c for u in graph[v]: if not visited[u]: dfs(u, 1 - c)
graphs
def __init__(self, size: int): self._graph: list[list[Edge]] = [[] for _ in range(size)] self._size = size
graphs
def __init__(self): self.num_vertices = 0 self.num_edges = 0 self.adjacency = {}
graphs
def add_vertex(self, vertex): if vertex not in self.adjacency: self.adjacency[vertex] = {} self.num_vertices += 1
graphs
def add_edge(self, head, tail, weight): self.add_vertex(head) self.add_vertex(tail) if head == tail: return self.adjacency[head][tail] = weight self.adjacency[tail][head] = weight
graphs
def distinct_weight(self): edges = self.get_edges() for edge in edges: head, tail, weight = edge edges.remove((tail, head, weight)) for i in range(len(edges)): edges[i] = list(edges[i]) edges.sort(key=lambda e: e[2]) for i in range(len(edges) - 1): if edges[i][2] >= edges[i + 1][2]: edges[i + 1][2] = edges[i][2] + 1 for edge in edges: head, tail, weight = edge self.adjacency[head][tail] = weight self.adjacency[tail][head] = weight
graphs
def __str__(self): string = "" for tail in self.adjacency: for head in self.adjacency[tail]: weight = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n")
graphs
def get_edges(self): output = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output
graphs
def get_vertices(self): return self.adjacency.keys()
graphs
def build(vertices=None, edges=None): g = Graph() if vertices is None: vertices = [] if edges is None: edge = [] for vertex in vertices: g.add_vertex(vertex) for edge in edges: g.add_edge(*edge) return g
graphs
def __init__(self): self.parent = {} self.rank = {}
graphs
def __len__(self): return len(self.parent)
graphs
def make_set(self, item): if item in self.parent: return self.find(item) self.parent[item] = item self.rank[item] = 0 return item
graphs
def find(self, item): if item not in self.parent: return self.make_set(item) if item != self.parent[item]: self.parent[item] = self.find(self.parent[item]) return self.parent[item]
graphs
def union(self, item1, item2): root1 = self.find(item1) root2 = self.find(item2) if root1 == root2: return root1 if self.rank[root1] > self.rank[root2]: self.parent[root2] = root1 return root1 if self.rank[root1] < self.rank[root2]: self.parent[root1] = root2 return root2 if self.rank[root1] == self.rank[root2]: self.rank[root1] += 1 self.parent[root2] = root1 return root1 return None
graphs
def min_path_sum(grid: list) -> int: if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information") for cell_n in range(1, len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] row_above = grid[0] for row_n in range(1, len(grid)): current_row = grid[row_n] grid[row_n] = fill_row(current_row, row_above) row_above = grid[row_n] return grid[-1][-1]
graphs
def fill_row(current_row: list, row_above: list) -> list: current_row[0] += row_above[0] for cell_n in range(1, len(current_row)): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n]) return current_row
graphs
def dfs(root, at, parent, out_edge_count): if parent == root: out_edge_count += 1 visited[at] = True low[at] = at for to in l[at]: if to == parent: pass elif not visited[to]: out_edge_count = dfs(root, to, at, out_edge_count) low[at] = min(low[at], low[to]) # AP found via bridge if at < low[to]: is_art[at] = True # AP found via cycle if at == low[to]: is_art[at] = True else: low[at] = min(low[at], to) return out_edge_count
graphs
def partition_graph(graph: dict[str, list[str]]) -> set[tuple[str, str]]: # Dict that maps contracted nodes to a list of all the nodes it "contains." contracted_nodes = {node: {node} for node in graph} graph_copy = {node: graph[node][:] for node in graph} while len(graph_copy) > 2: # Choose a random edge. u = random.choice(list(graph_copy.keys())) v = random.choice(graph_copy[u]) # Contract edge (u, v) to new node uv uv = u + v uv_neighbors = list(set(graph_copy[u] + graph_copy[v])) uv_neighbors.remove(u) uv_neighbors.remove(v) graph_copy[uv] = uv_neighbors for neighbor in uv_neighbors: graph_copy[neighbor].append(uv) contracted_nodes[uv] = set(contracted_nodes[u].union(contracted_nodes[v])) # Remove nodes u and v. del graph_copy[u] del graph_copy[v] for neighbor in uv_neighbors: if u in graph_copy[neighbor]: graph_copy[neighbor].remove(u) if v in graph_copy[neighbor]: graph_copy[neighbor].remove(v) # Find cutset. groups = [contracted_nodes[node] for node in graph_copy] return { (node, neighbor) for node in groups[0] for neighbor in graph[node] if neighbor in groups[1] }
graphs
def dfs(graph: dict, vert: int, visited: list) -> list: visited[vert] = True connected_verts = [] for neighbour in graph[vert]: if not visited[neighbour]: connected_verts += dfs(graph, neighbour, visited) return [vert, *connected_verts]
graphs
def connected_components(graph: dict) -> list: graph_size = len(graph) visited = graph_size * [False] components_list = [] for i in range(graph_size): if not visited[i]: i_connected = dfs(graph, i, visited) components_list.append(i_connected) return components_list
graphs
def breadth_first_search(graph: dict, start: str) -> list[str]: explored = {start} result = [start] queue: Queue = Queue() queue.put(start) while not queue.empty(): v = queue.get() for w in graph[v]: if w not in explored: explored.add(w) result.append(w) queue.put(w) return result
graphs
def breadth_first_search_with_deque(graph: dict, start: str) -> list[str]: visited = {start} result = [start] queue = deque([start]) while queue: v = queue.popleft() for child in graph[v]: if child not in visited: visited.add(child) result.append(child) queue.append(child) return result
graphs
def benchmark_function(name: str) -> None: setup = f"from __main__ import G, {name}" number = 10000 res = timeit(f"{name}(G, 'A')", setup=setup, number=number) print(f"{name:<35} finished {number} runs in {res:.5f} seconds")
graphs
def __init__(self): self.connections = {}
graphs
def add_node(self, node: str) -> None: self.connections[node] = {}
graphs
def add_transition_probability( self, node1: str, node2: str, probability: float ) -> None: if node1 not in self.connections: self.add_node(node1) if node2 not in self.connections: self.add_node(node2) self.connections[node1][node2] = probability
graphs
def get_nodes(self) -> list[str]: return list(self.connections)
graphs
def transition(self, node: str) -> str: current_probability = 0 random_value = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return ""
graphs
def get_transitions( start: str, transitions: list[tuple[str, str, float]], steps: int ) -> dict[str, int]: graph = MarkovChainGraphUndirectedUnweighted() for node1, node2, probability in transitions: graph.add_transition_probability(node1, node2, probability) visited = Counter(graph.get_nodes()) node = start for _ in range(steps): node = graph.transition(node) visited[node] += 1 return visited
graphs
def __repr__(self): self.neighbors.append(vertex)
graphs
def add_edge(self, vertex, weight):
graphs
def __get_demo_graph(index): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index]
graphs
def dfs(at, parent, bridges, id_): visited[at] = True low[at] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(to, at, bridges, id_) low[at] = min(low[at], low[to]) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at)) else: # This edge is a back edge and cannot be a bridge low[at] = min(low[at], low[to])
graphs
def __init__( self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, g_cost: int, parent: Node | None, ) -> None: self.pos_x = pos_x self.pos_y = pos_y self.pos = (pos_y, pos_x) self.goal_x = goal_x self.goal_y = goal_y self.g_cost = g_cost self.parent = parent self.h_cost = self.calculate_heuristic() self.f_cost = self.g_cost + self.h_cost
graphs
def calculate_heuristic(self) -> float: dy = self.pos_x - self.goal_x dx = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(dx) + abs(dy) else: return sqrt(dy**2 + dx**2)
graphs
def __lt__(self, other: Node) -> bool: return self.f_cost < other.f_cost
graphs
def __init__(self, start: TPosition, goal: TPosition): self.start = Node(start[1], start[0], goal[1], goal[0], 0, None) self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None) self.open_nodes = [self.start] self.closed_nodes: list[Node] = [] self.reached = False
graphs
def search(self) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() current_node = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(current_node) self.closed_nodes.append(current_node) successors = self.get_successors(current_node) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(child_node) else: # retrieve the best current path better_node = self.open_nodes.pop(self.open_nodes.index(child_node)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(child_node) else: self.open_nodes.append(better_node) return [self.start.pos]
graphs
def get_successors(self, parent: Node) -> list[Node]: successors = [] for action in delta: pos_x = parent.pos_x + action[1] pos_y = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, parent, ) ) return successors
graphs
def retrace_path(self, node: Node | None) -> list[TPosition]: current_node = node path = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) current_node = current_node.parent path.reverse() return path
graphs
def __init__(self, start: TPosition, goal: TPosition) -> None: self.fwd_astar = AStar(start, goal) self.bwd_astar = AStar(goal, start) self.reached = False
graphs
def search(self) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() current_fwd_node = self.fwd_astar.open_nodes.pop(0) current_bwd_node = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( current_fwd_node, current_bwd_node ) self.fwd_astar.closed_nodes.append(current_fwd_node) self.bwd_astar.closed_nodes.append(current_bwd_node) self.fwd_astar.target = current_bwd_node self.bwd_astar.target = current_fwd_node successors = { self.fwd_astar: self.fwd_astar.get_successors(current_fwd_node), self.bwd_astar: self.bwd_astar.get_successors(current_bwd_node), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(child_node) else: # retrieve the best current path better_node = astar.open_nodes.pop( astar.open_nodes.index(child_node) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(child_node) else: astar.open_nodes.append(better_node) return [self.fwd_astar.start.pos]
graphs
def retrace_bidirectional_path( self, fwd_node: Node, bwd_node: Node ) -> list[TPosition]: fwd_path = self.fwd_astar.retrace_path(fwd_node) bwd_path = self.bwd_astar.retrace_path(bwd_node) bwd_path.pop() bwd_path.reverse() path = fwd_path + bwd_path return path
graphs
def __init__(self): self.graph = {}
graphs
def add_pair(self, u, v, w=1): if self.graph.get(u): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: self.graph[u] = [[w, v]] if not self.graph.get(v): self.graph[v] = []
graphs
def all_nodes(self): return list(self.graph)
graphs
def remove_pair(self, u, v): if self.graph.get(u): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_)
graphs
def dfs(self, s=-2, d=-1): if s == d: return [] stack = [] visited = [] if s == -2: s = list(self.graph)[0] stack.append(s) visited.append(s) ss = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(d) return visited else: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(stack) != 0: s = stack[len(stack) - 1] else: s = ss # check if se have reached the starting point if len(stack) == 0: return visited
graphs
def fill_graph_randomly(self, c=-1): if c == -1: c = floor(random() * 10000) + 10 for i in range(c): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): n = floor(random() * c) + 1 if n != i: self.add_pair(i, n, 1)
graphs
def bfs(self, s=-2): d = deque() visited = [] if s == -2: s = list(self.graph)[0] d.append(s) visited.append(s) while d: s = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited
graphs
def in_degree(self, u): count = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count
graphs
def out_degree(self, u): return len(self.graph[u])
graphs
def topological_sort(self, s=-2): stack = [] visited = [] if s == -2: s = list(self.graph)[0] stack.append(s) visited.append(s) ss = s sorted_nodes = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(stack) != 0: s = stack[len(stack) - 1] else: s = ss # check if se have reached the starting point if len(stack) == 0: return sorted_nodes
graphs
def cycle_nodes(self): stack = [] visited = [] s = list(self.graph)[0] stack.append(s) visited.append(s) parent = -2 indirect_parents = [] ss = s on_the_way_back = False anticipating_nodes = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): len_stack = len(stack) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: stack.pop() on_the_way_back = True if len(stack) != 0: s = stack[len(stack) - 1] else: on_the_way_back = False indirect_parents.append(parent) parent = s s = ss # check if se have reached the starting point if len(stack) == 0: return list(anticipating_nodes)
graphs
def has_cycle(self): stack = [] visited = [] s = list(self.graph)[0] stack.append(s) visited.append(s) parent = -2 indirect_parents = [] ss = s on_the_way_back = False anticipating_nodes = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): len_stack_minus_one = len(stack) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: stack.pop() on_the_way_back = True if len(stack) != 0: s = stack[len(stack) - 1] else: on_the_way_back = False indirect_parents.append(parent) parent = s s = ss # check if se have reached the starting point if len(stack) == 0: return False
graphs
def dfs_time(self, s=-2, e=-1): begin = time() self.dfs(s, e) end = time() return end - begin
graphs
def bfs_time(self, s=-2): begin = time() self.bfs(s) end = time() return end - begin
graphs
def __init__(self): self.graph = {}
graphs
def add_pair(self, u, v, w=1): # check if the u exists if self.graph.get(u): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist self.graph[u] = [[w, v]] # add the other way if self.graph.get(v): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist self.graph[v] = [[w, u]]
graphs
def remove_pair(self, u, v): if self.graph.get(u): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_) # the other way round if self.graph.get(v): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_)
graphs
def dfs(self, s=-2, d=-1): if s == d: return [] stack = [] visited = [] if s == -2: s = list(self.graph)[0] stack.append(s) visited.append(s) ss = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(d) return visited else: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(stack) != 0: s = stack[len(stack) - 1] else: s = ss # check if se have reached the starting point if len(stack) == 0: return visited
graphs
def fill_graph_randomly(self, c=-1): if c == -1: c = floor(random() * 10000) + 10 for i in range(c): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): n = floor(random() * c) + 1 if n != i: self.add_pair(i, n, 1)
graphs
def bfs(self, s=-2): d = deque() visited = [] if s == -2: s = list(self.graph)[0] d.append(s) visited.append(s) while d: s = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited
graphs
def degree(self, u): return len(self.graph[u])
graphs
def cycle_nodes(self): stack = [] visited = [] s = list(self.graph)[0] stack.append(s) visited.append(s) parent = -2 indirect_parents = [] ss = s on_the_way_back = False anticipating_nodes = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): len_stack = len(stack) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: stack.pop() on_the_way_back = True if len(stack) != 0: s = stack[len(stack) - 1] else: on_the_way_back = False indirect_parents.append(parent) parent = s s = ss # check if se have reached the starting point if len(stack) == 0: return list(anticipating_nodes)
graphs
def has_cycle(self): stack = [] visited = [] s = list(self.graph)[0] stack.append(s) visited.append(s) parent = -2 indirect_parents = [] ss = s on_the_way_back = False anticipating_nodes = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: ss = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): len_stack_minus_one = len(stack) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) ss = node[1] break # check if all the children are visited if s == ss: stack.pop() on_the_way_back = True if len(stack) != 0: s = stack[len(stack) - 1] else: on_the_way_back = False indirect_parents.append(parent) parent = s s = ss # check if se have reached the starting point if len(stack) == 0: return False
graphs
def all_nodes(self): return list(self.graph)
graphs
def dfs_time(self, s=-2, e=-1): begin = time() self.dfs(s, e) end = time() return end - begin
graphs
def __init__( self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, g_cost: float, parent: Node | None, ): self.pos_x = pos_x self.pos_y = pos_y self.pos = (pos_y, pos_x) self.goal_x = goal_x self.goal_y = goal_y self.g_cost = g_cost self.parent = parent self.f_cost = self.calculate_heuristic()
graphs
def calculate_heuristic(self) -> float: dy = abs(self.pos_x - self.goal_x) dx = abs(self.pos_y - self.goal_y) return dx + dy
graphs