function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def __lt__(self, other) -> bool:
return self.f_cost < other.f_cost | graphs |
def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
self.open_nodes = [self.start]
self.closed_nodes: list[Node] = []
self.reached = False | graphs |
def search(self) -> Path | None:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
current_node = self.open_nodes.pop(0)
if current_node.pos == self.target.pos:
self.reached = True
return self.retrace_path(current_node)
self.closed_nodes.append(current_node)
successors = self.get_successors(current_node)
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
if not self.reached:
return [self.start.pos]
return None | graphs |
def get_successors(self, parent: Node) -> list[Node]:
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost + 1,
parent,
)
)
return successors | graphs |
def retrace_path(self, node: Node | None) -> Path:
current_node = node
path = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
current_node = current_node.parent
path.reverse()
return path | graphs |
def get_distinct_edge(edge_array):
distinct_edge = set()
for row in edge_array:
for item in row:
distinct_edge.add(item[0])
return list(distinct_edge) | graphs |
def get_bitcode(edge_array, distinct_edge):
bitcode = ["0"] * len(edge_array)
for i, row in enumerate(edge_array):
for item in row:
if distinct_edge in item[0]:
bitcode[i] = "1"
break
return "".join(bitcode) | graphs |
def get_frequency_table(edge_array):
distinct_edge = get_distinct_edge(edge_array)
frequency_table = {}
for item in distinct_edge:
bit = get_bitcode(edge_array, item)
# print('bit',bit)
# bt=''.join(bit)
s = bit.count("1")
frequency_table[item] = [s, bit]
# Store [Distinct edge, WT(Bitcode), Bitcode] in descending order
sorted_frequency_table = [
[k, v[0], v[1]]
for k, v in sorted(frequency_table.items(), key=lambda v: v[1][0], reverse=True)
]
return sorted_frequency_table | graphs |
def get_nodes(frequency_table):
nodes = {}
for _, item in enumerate(frequency_table):
nodes.setdefault(item[2], []).append(item[0])
return nodes | graphs |
def get_cluster(nodes):
cluster = {}
for key, value in nodes.items():
cluster.setdefault(key.count("1"), {})[key] = value
return cluster | graphs |
def get_support(cluster):
return [i * 100 / len(cluster) for i in cluster] | graphs |
def print_all() -> None:
print("\nNodes\n")
for key, value in nodes.items():
print(key, value)
print("\nSupport\n")
print(support)
print("\n Cluster \n")
for key, value in sorted(cluster.items(), reverse=True):
print(key, value)
print("\n Graph\n")
for key, value in graph.items():
print(key, value)
print("\n Edge List of Frequent subgraphs \n")
for edge_list in freq_subgraph_edge_list:
print(edge_list) | graphs |
def create_edge(nodes, graph, cluster, c1):
for i in cluster[c1]:
count = 0
c2 = c1 + 1
while c2 < max(cluster.keys()):
for j in cluster[c2]:
if int(i, 2) & int(j, 2) == int(i, 2):
if tuple(nodes[i]) in graph:
graph[tuple(nodes[i])].append(nodes[j])
else:
graph[tuple(nodes[i])] = [nodes[j]]
count += 1
if count == 0:
c2 = c2 + 1
else:
break | graphs |
def construct_graph(cluster, nodes):
x = cluster[max(cluster.keys())]
cluster[max(cluster.keys()) + 1] = "Header"
graph = {}
for i in x:
if (["Header"],) in graph:
graph[(["Header"],)].append(x[i])
else:
graph[(["Header"],)] = [x[i]]
for i in x:
graph[(x[i],)] = [["Header"]]
i = 1
while i < max(cluster) - 1:
create_edge(nodes, graph, cluster, i)
i = i + 1
return graph | graphs |
def my_dfs(graph, start, end, path=None):
path = (path or []) + [start]
if start == end:
paths.append(path)
for node in graph[start]:
if tuple(node) not in path:
my_dfs(graph, tuple(node), end, path) | graphs |
def find_freq_subgraph_given_support(s, cluster, graph):
k = int(s / 100 * (len(cluster) - 1))
for i in cluster[k]:
my_dfs(graph, tuple(cluster[k][i]), (["Header"],)) | graphs |
def freq_subgraphs_edge_list(paths):
freq_sub_el = []
for edges in paths:
el = []
for j in range(len(edges) - 1):
temp = list(edges[j])
for e in temp:
edge = (e[0], e[1])
el.append(edge)
freq_sub_el.append(el)
return freq_sub_el | graphs |
def preprocess(edge_array):
for i in range(len(edge_array)):
for j in range(len(edge_array[i])):
t = edge_array[i][j].split("-")
edge_array[i][j] = t | graphs |
def search(
grid: list[list[int]],
init: list[int],
goal: list[int],
cost: int,
heuristic: list[list[int]],
) -> tuple[list[list[int]], list[list[int]]]:
closed = [
[0 for col in range(len(grid[0]))] for row in range(len(grid))
] # the reference grid
closed[init[0]][init[1]] = 1
action = [
[0 for col in range(len(grid[0]))] for row in range(len(grid))
] # the action grid
x = init[0]
y = init[1]
g = 0
f = g + heuristic[x][y] # cost from starting cell to destination cell
cell = [[f, g, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
while not found and not resign:
if len(cell) == 0:
raise ValueError("Algorithm is unable to find solution")
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
next_cell = cell.pop()
x = next_cell[2]
y = next_cell[3]
g = next_cell[1]
if x == goal[0] and y == goal[1]:
found = True
else:
for i in range(len(DIRECTIONS)): # to try out different valid actions
x2 = x + DIRECTIONS[i][0]
y2 = y + DIRECTIONS[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
f2 = g2 + heuristic[x2][y2]
cell.append([f2, g2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
invpath = []
x = goal[0]
y = goal[1]
invpath.append([x, y]) # we get the reverse path from here
while x != init[0] or y != init[1]:
x2 = x - DIRECTIONS[action[x][y]][0]
y2 = y - DIRECTIONS[action[x][y]][1]
x = x2
y = y2
invpath.append([x, y])
path = []
for i in range(len(invpath)):
path.append(invpath[len(invpath) - 1 - i])
return path, action | graphs |
def print_distance(distance: list[float], src):
print(f"Vertex\tShortest Distance from vertex {src}")
for i, d in enumerate(distance):
print(f"{i}\t\t{d}") | graphs |
def check_negative_cycle(
graph: list[dict[str, int]], distance: list[float], edge_count: int
):
for j in range(edge_count):
u, v, w = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf") and distance[u] + w < distance[v]:
return True
return False | graphs |
def bellman_ford(
graph: list[dict[str, int]], vertex_count: int, edge_count: int, src: int
) -> list[float]:
distance = [float("inf")] * vertex_count
distance[src] = 0.0
for _ in range(vertex_count - 1):
for j in range(edge_count):
u, v, w = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf") and distance[u] + w < distance[v]:
distance[v] = distance[u] + w
negative_cycle_exists = check_negative_cycle(graph, distance, edge_count)
if negative_cycle_exists:
raise Exception("Negative cycle found")
return distance | graphs |
def _input(message):
return input(message).strip().split(" ") | graphs |
def initialize_unweighted_directed_graph(
node_count: int, edge_count: int
) -> dict[int, list[int]]:
graph: dict[int, list[int]] = {}
for i in range(node_count):
graph[i + 1] = []
for e in range(edge_count):
x, y = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> "))
graph[x].append(y)
return graph | graphs |
def initialize_unweighted_undirected_graph(
node_count: int, edge_count: int
) -> dict[int, list[int]]:
graph: dict[int, list[int]] = {}
for i in range(node_count):
graph[i + 1] = []
for e in range(edge_count):
x, y = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> "))
graph[x].append(y)
graph[y].append(x)
return graph | graphs |
def initialize_weighted_undirected_graph(
node_count: int, edge_count: int
) -> dict[int, list[tuple[int, int]]]:
graph: dict[int, list[tuple[int, int]]] = {}
for i in range(node_count):
graph[i + 1] = []
for e in range(edge_count):
x, y, w = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> <weight> "))
graph[x].append((y, w))
graph[y].append((x, w))
return graph | graphs |
def dfs(g, s):
vis, _s = {s}, [s]
print(s)
while _s:
flag = 0
for i in g[_s[-1]]:
if i not in vis:
_s.append(i)
vis.add(i)
flag = 1
print(i)
break
if not flag:
_s.pop() | graphs |
def bfs(g, s):
vis, q = {s}, deque([s])
print(s)
while q:
u = q.popleft()
for v in g[u]:
if v not in vis:
vis.add(v)
q.append(v)
print(v) | graphs |
def dijk(g, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(g) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in g[u]:
if v[0] not in known and dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for i in dist:
if i != s:
print(dist[i]) | graphs |
def topo(g, ind=None, q=None):
if q is None:
q = [1]
if ind is None:
ind = [0] * (len(g) + 1) # SInce oth Index is ignored
for u in g:
for v in g[u]:
ind[v] += 1
q = deque()
for i in g:
if ind[i] == 0:
q.append(i)
if len(q) == 0:
return
v = q.popleft()
print(v)
for w in g[v]:
ind[w] -= 1
if ind[w] == 0:
q.append(w)
topo(g, ind, q) | graphs |
def adjm():
n = input().strip()
a = []
for _ in range(n):
a.append(map(int, input().strip().split()))
return a, n | graphs |
def floy(a_and_n):
(a, n) = a_and_n
dist = list(a)
path = [[0] * n for i in range(n)]
for k in range(n):
for i in range(n):
for j in range(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print(dist) | graphs |
def prim(g, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(g) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in g[u]:
if v[0] not in known and v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
return dist | graphs |
def edglist():
n, m = map(int, input().split(" "))
edges = []
for _ in range(m):
edges.append(map(int, input().split(" ")))
return edges, n | graphs |
def krusk(e_and_n):
# Sort edges on the basis of distance
(e, n) = e_and_n
e.sort(reverse=True, key=lambda x: x[2])
s = [{i} for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print(s)
x = e.pop()
for i in range(len(s)):
if x[0] in s[i]:
break
for j in range(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break | graphs |
def strong_connect(v, index, components):
index_of[v] = index # the number when this node is seen
lowlink_of[v] = index # lowest rank node reachable from here
index += 1
stack.append(v)
on_stack[v] = True
for w in g[v]:
if index_of[w] == -1:
index = strong_connect(w, index, components)
lowlink_of[v] = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
lowlink_of[v] = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
component = []
w = stack.pop()
on_stack[w] = False
component.append(w)
while w != v:
w = stack.pop()
on_stack[w] = False
component.append(w)
components.append(component)
return index | graphs |
def create_graph(n, edges):
g = [[] for _ in range(n)]
for u, v in edges:
g[u].append(v)
return g | graphs |
def bfs():
while not queue.empty():
u = queue.get()
visited[u] = True
for neighbour in graph[u]:
if neighbour == u:
return False
if color[neighbour] == -1:
color[neighbour] = 1 - color[u]
queue.put(neighbour)
elif color[neighbour] == color[u]:
return False
return True | graphs |
def __init__(self, num_of_nodes: int) -> None:
self.m_num_of_nodes = num_of_nodes
self.m_edges: list[list[int]] = []
self.m_component: dict[int, int] = {} | graphs |
def add_edge(self, u_node: int, v_node: int, weight: int) -> None:
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node]) | graphs |
def set_component(self, u_node: int) -> None:
in terms of size, and attaches the smaller one to the larger one to form
# Initialize additional lists required to algorithm.
component_size = []
mst_weight = 0
minimum_weight_edge: list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes):
self.m_component.update({node: node})
component_size.append(1)
num_of_components = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
u, v, w = edge
u_component = self.m_component[u]
v_component = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
minimum_weight_edge[component] = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(edge, list):
u, v, w = edge
u_component = self.m_component[u]
v_component = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(component_size, u_component, v_component)
print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n")
num_of_components -= 1
minimum_weight_edge = [-1] * self.m_num_of_nodes
print(f"The total weight of the minimal spanning tree is: {mst_weight}") | graphs |
def test_vector() -> None: | graphs |
def __init__(self, n):
self.lvl = [0] * n
self.ptr = [0] * n
self.q = [0] * n
self.adj = [[] for _ in range(n)] | graphs |
def add_edge(self, a, b, c, rcap=0):
self.adj[a].append([b, len(self.adj[b]), c, 0])
self.adj[b].append([a, len(self.adj[a]) - 1, rcap, 0]) | graphs |
def depth_first_search(self, vertex, sink, flow):
if vertex == sink or not flow:
return flow
for i in range(self.ptr[vertex], len(self.adj[vertex])):
e = self.adj[vertex][i]
if self.lvl[e[0]] == self.lvl[vertex] + 1:
p = self.depth_first_search(e[0], sink, min(flow, e[2] - e[3]))
if p:
self.adj[vertex][i][3] += p
self.adj[e[0]][e[1]][3] -= p
return p
self.ptr[vertex] = self.ptr[vertex] + 1
return 0 | graphs |
def max_flow(self, source, sink):
flow, self.q[0] = 0, source
for l in range(31): # noqa: E741 l = 30 maybe faster for random data
while True:
self.lvl, self.ptr = [0] * len(self.q), [0] * len(self.q)
qi, qe, self.lvl[source] = 0, 1, 1
while qi < qe and not self.lvl[sink]:
v = self.q[qi]
qi += 1
for e in self.adj[v]:
if not self.lvl[e[0]] and (e[2] - e[3]) >> (30 - l):
self.q[qe] = e[0]
qe += 1
self.lvl[e[0]] = self.lvl[v] + 1
p = self.depth_first_search(source, sink, INF)
while p:
flow += p
p = self.depth_first_search(source, sink, INF)
if not self.lvl[sink]:
break
return flow | graphs |
def dfs(u, graph, visited_edge, path=None):
path = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
visited_edge[u][v], visited_edge[v][u] = True, True
path = dfs(v, graph, visited_edge, path)
return path | graphs |
def check_circuit_or_path(graph, max_node):
odd_degree_nodes = 0
odd_node = -1
for i in range(max_node):
if i not in graph.keys():
continue
if len(graph[i]) % 2 == 1:
odd_degree_nodes += 1
odd_node = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node | graphs |
def check_euler(graph, max_node):
visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)]
check, odd_node = check_circuit_or_path(graph, max_node)
if check == 3:
print("graph is not Eulerian")
print("no path")
return
start_node = 1
if check == 2:
start_node = odd_node
print("graph has a Euler path")
if check == 1:
print("graph has a Euler cycle")
path = dfs(start_node, graph, visited_edge)
print(path) | graphs |
def main():
g1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
g2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
g3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
g4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
g5 = {
1: [],
2: []
# all degree is zero
}
max_node = 10
check_euler(g1, max_node)
check_euler(g2, max_node)
check_euler(g3, max_node)
check_euler(g4, max_node)
check_euler(g5, max_node) | graphs |
def print_dist(dist, v):
print("\nVertex Distance")
for i in range(v):
if dist[i] != float("inf"):
print(i, "\t", int(dist[i]), end="\t")
else:
print(i, "\t", "INF", end="\t")
print() | graphs |
def min_dist(mdist, vset, v):
min_val = float("inf")
min_ind = -1
for i in range(v):
if (not vset[i]) and mdist[i] < min_val:
min_ind = i
min_val = mdist[i]
return min_ind | graphs |
def dijkstra(graph, v, src):
mdist = [float("inf") for _ in range(v)]
vset = [False for _ in range(v)]
mdist[src] = 0.0
for _ in range(v - 1):
u = min_dist(mdist, vset, v)
vset[u] = True
for i in range(v):
if (
(not vset[i])
and graph[u][i] != float("inf")
and mdist[u] + graph[u][i] < mdist[i]
):
mdist[i] = mdist[u] + graph[u][i]
print_dist(mdist, i) | graphs |
def random_graph(
vertices_number: int, probability: float, directed: bool = False
) -> dict:
graph: dict = {i: [] for i in range(vertices_number)}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(vertices_number)
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(vertices_number):
for j in range(i + 1, vertices_number):
if random.random() < probability:
graph[i].append(j)
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(i)
return graph | graphs |
def complete_graph(vertices_number: int) -> dict:
return {
i: [j for j in range(vertices_number) if i != j] for i in range(vertices_number)
} | graphs |
def print_stack(stack, clothes):
order = 1
while stack:
current_clothing = stack.pop()
print(order, clothes[current_clothing])
order += 1 | graphs |
def depth_first_search(u, visited, graph):
visited[u] = 1
for v in graph[u]:
if not visited[v]:
depth_first_search(v, visited, graph)
stack.append(u) | graphs |
def topological_sort(graph, visited):
for v in range(len(graph)):
if not visited[v]:
depth_first_search(v, visited, graph) | graphs |
def dfs(u):
global graph, reversed_graph, scc, component, visit, stack
if visit[u]:
return
visit[u] = True
for v in graph[u]:
dfs(v)
stack.append(u) | graphs |
def dfs2(u):
global graph, reversed_graph, scc, component, visit, stack
if visit[u]:
return
visit[u] = True
component.append(u)
for v in reversed_graph[u]:
dfs2(v) | graphs |
def kosaraju():
global graph, reversed_graph, scc, component, visit, stack
for i in range(n):
dfs(i)
visit = [False] * n
for i in stack[::-1]:
if visit[i]:
continue
component = []
dfs2(i)
scc.append(component)
return scc | graphs |
def __init__(
self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, parent: Node | None
):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos = (pos_y, pos_x)
self.goal_x = goal_x
self.goal_y = goal_y
self.parent = parent | graphs |
def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
self.start = Node(start[1], start[0], goal[1], goal[0], None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], None)
self.node_queue = [self.start]
self.reached = False | graphs |
def search(self) -> Path | None:
while self.node_queue:
current_node = self.node_queue.pop(0)
if current_node.pos == self.target.pos:
self.reached = True
return self.retrace_path(current_node)
successors = self.get_successors(current_node)
for node in successors:
self.node_queue.append(node)
if not self.reached:
return [self.start.pos]
return None | graphs |
def get_successors(self, parent: Node) -> list[Node]:
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent)
)
return successors | graphs |
def retrace_path(self, node: Node | None) -> Path:
current_node = node
path = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
current_node = current_node.parent
path.reverse()
return path | graphs |
def __init__(self, start, goal):
self.fwd_bfs = BreadthFirstSearch(start, goal)
self.bwd_bfs = BreadthFirstSearch(goal, start)
self.reached = False | graphs |
def search(self) -> Path | None:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
current_fwd_node = self.fwd_bfs.node_queue.pop(0)
current_bwd_node = self.bwd_bfs.node_queue.pop(0)
if current_bwd_node.pos == current_fwd_node.pos:
self.reached = True
return self.retrace_bidirectional_path(
current_fwd_node, current_bwd_node
)
self.fwd_bfs.target = current_bwd_node
self.bwd_bfs.target = current_fwd_node
successors = {
self.fwd_bfs: self.fwd_bfs.get_successors(current_fwd_node),
self.bwd_bfs: self.bwd_bfs.get_successors(current_bwd_node),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(node)
if not self.reached:
return [self.fwd_bfs.start.pos]
return None | graphs |
def retrace_bidirectional_path(self, fwd_node: Node, bwd_node: Node) -> Path:
fwd_path = self.fwd_bfs.retrace_path(fwd_node)
bwd_path = self.bwd_bfs.retrace_path(bwd_node)
bwd_path.pop()
bwd_path.reverse()
path = fwd_path + bwd_path
return path | graphs |
def __init__(self):
self.elements = []
self.set = set() | graphs |
def minkey(self):
if not self.empty():
return self.elements[0][0]
else:
return float("inf") | graphs |
def empty(self):
return len(self.elements) == 0 | graphs |
def put(self, item, priority):
if item not in self.set:
heapq.heappush(self.elements, (priority, item))
self.set.add(item)
else:
# update
# print("update", item)
temp = []
(pri, x) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
(pri, x) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements, (pro, xxx)) | graphs |
def remove_element(self, item):
if item in self.set:
self.set.remove(item)
temp = []
(pro, x) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
(pro, x) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements, (prito, yyy)) | graphs |
def top_show(self):
return self.elements[0][1] | graphs |
def get(self):
(priority, item) = heapq.heappop(self.elements)
self.set.remove(item)
return (priority, item) | graphs |
def consistent_heuristic(p: TPos, goal: TPos):
# euclidean distance
a = np.array(p)
b = np.array(goal)
return np.linalg.norm(a - b) | graphs |
def heuristic_2(p: TPos, goal: TPos):
# integer division by time variable
return consistent_heuristic(p, goal) // t | graphs |
def heuristic_1(p: TPos, goal: TPos):
# manhattan distance
return abs(p[0] - goal[0]) + abs(p[1] - goal[1]) | graphs |
def key(start: TPos, i: int, goal: TPos, g_function: dict[TPos, float]):
ans = g_function[start] + W1 * heuristics[i](start, goal)
return ans | graphs |
def do_something(back_pointer, goal, start):
grid = np.chararray((n, n))
for i in range(n):
for j in range(n):
grid[i][j] = "*"
for i in range(n):
for j in range(n):
if (j, (n - 1) - i) in blocks:
grid[i][j] = "#"
grid[0][(n - 1)] = "-"
x = back_pointer[goal]
while x != start:
(x_c, y_c) = x
# print(x)
grid[(n - 1) - y_c][x_c] = "-"
x = back_pointer[x]
grid[(n - 1)][0] = "-"
for i in range(n):
for j in range(n):
if (i, j) == (0, n - 1):
print(grid[i][j], end=" ")
print("<-- End position", end=" ")
else:
print(grid[i][j], end=" ")
print()
print("^")
print("Start position")
print()
print("# is an obstacle")
print("- is the path taken by algorithm")
print("PATH TAKEN BY THE ALGORITHM IS:-")
x = back_pointer[goal]
while x != start:
print(x, end=" ")
x = back_pointer[x]
print(x)
sys.exit() | graphs |
def valid(p: TPos):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True | graphs |
def expand_state(
s,
j,
visited,
g_function,
close_list_anchor,
close_list_inad,
open_list,
back_pointer,
):
for itera in range(n_heuristic):
open_list[itera].remove_element(s)
# print("s", s)
# print("j", j)
(x, y) = s
left = (x - 1, y)
right = (x + 1, y)
up = (x, y + 1)
down = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(neighbours) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(neighbours)
back_pointer[neighbours] = -1
g_function[neighbours] = float("inf")
if valid(neighbours) and g_function[neighbours] > g_function[s] + 1:
g_function[neighbours] = g_function[s] + 1
back_pointer[neighbours] = s
if neighbours not in close_list_anchor:
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
if neighbours not in close_list_inad:
for var in range(1, n_heuristic):
if key(neighbours, var, goal, g_function) <= W2 * key(
neighbours, 0, goal, g_function
):
open_list[j].put(
neighbours, key(neighbours, var, goal, g_function)
) | graphs |
def make_common_ground():
some_list = []
for x in range(1, 5):
for y in range(1, 6):
some_list.append((x, y))
for x in range(15, 20):
some_list.append((x, 17))
for x in range(10, 19):
for y in range(1, 15):
some_list.append((x, y))
# L block
for x in range(1, 4):
for y in range(12, 19):
some_list.append((x, y))
for x in range(3, 13):
for y in range(16, 19):
some_list.append((x, y))
return some_list | graphs |
def multi_a_star(start: TPos, goal: TPos, n_heuristic: int):
g_function = {start: 0, goal: float("inf")}
back_pointer = {start: -1, goal: -1}
open_list = []
visited = set()
for i in range(n_heuristic):
open_list.append(PriorityQueue())
open_list[i].put(start, key(start, i, goal, g_function))
close_list_anchor: list[int] = []
close_list_inad: list[int] = []
while open_list[0].minkey() < float("inf"):
for i in range(1, n_heuristic):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= W2 * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("inf"):
do_something(back_pointer, goal, start)
else:
_, get_s = open_list[i].top_show()
visited.add(get_s)
expand_state(
get_s,
i,
visited,
g_function,
close_list_anchor,
close_list_inad,
open_list,
back_pointer,
)
close_list_inad.append(get_s)
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf"):
do_something(back_pointer, goal, start)
else:
get_s = open_list[0].top_show()
visited.add(get_s)
expand_state(
get_s,
0,
visited,
g_function,
close_list_anchor,
close_list_inad,
open_list,
back_pointer,
)
close_list_anchor.append(get_s)
print("No path found to goal")
print()
for i in range(n - 1, -1, -1):
for j in range(n):
if (j, i) in blocks:
print("#", end=" ")
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("*", end=" ")
else:
print("-", end=" ")
else:
print("*", end=" ")
if (j, i) == (n - 1, n - 1):
print("<-- End position", end=" ")
print()
print("^")
print("Start position")
print()
print("# is an obstacle")
print("- is the path taken by algorithm") | graphs |
def get_parent_position(position: int) -> int:
return (position - 1) // 2 | graphs |
def get_child_left_position(position: int) -> int:
return (2 * position) + 1 | graphs |
def get_child_right_position(position: int) -> int:
return (2 * position) + 2 | graphs |
def __init__(self) -> None:
self.heap: list[tuple[T, int]] = []
self.position_map: dict[T, int] = {}
self.elements: int = 0 | graphs |
def __len__(self) -> int:
return self.elements | graphs |
def __repr__(self) -> str:
return str(self.heap) | graphs |
def is_empty(self) -> bool:
# Check if the priority queue is empty
return self.elements == 0 | graphs |
def push(self, elem: T, weight: int) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight))
self.position_map[elem] = self.elements
self.elements += 1
self._bubble_up(elem) | graphs |
def extract_min(self) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0, self.elements - 1)
elem, _ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
bubble_down_elem, _ = self.heap[0]
self._bubble_down(bubble_down_elem)
return elem | graphs |
def update_key(self, elem: T, weight: int) -> None:
# Update the weight of the given key
position = self.position_map[elem]
self.heap[position] = (elem, weight)
if position > 0:
parent_position = get_parent_position(position)
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(elem)
else:
self._bubble_down(elem)
else:
self._bubble_down(elem) | graphs |
def _bubble_up(self, elem: T) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
curr_pos = self.position_map[elem]
if curr_pos == 0:
return None
parent_position = get_parent_position(curr_pos)
_, weight = self.heap[curr_pos]
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(parent_position, curr_pos)
return self._bubble_up(elem)
return None | graphs |
def _bubble_down(self, elem: T) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
curr_pos = self.position_map[elem]
_, weight = self.heap[curr_pos]
child_left_position = get_child_left_position(curr_pos)
child_right_position = get_child_right_position(curr_pos)
if child_left_position < self.elements and child_right_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
if child_left_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(child_left_position, curr_pos)
return self._bubble_down(elem)
else:
return None
if child_right_position < self.elements:
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
return None | graphs |
def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None:
# Swap the nodes at the given positions
node1_elem = self.heap[node1_pos][0]
node2_elem = self.heap[node2_pos][0]
self.heap[node1_pos], self.heap[node2_pos] = (
self.heap[node2_pos],
self.heap[node1_pos],
)
self.position_map[node1_elem] = node2_pos
self.position_map[node2_elem] = node1_pos | graphs |
def __init__(self) -> None:
self.connections: dict[T, dict[T, int]] = {}
self.nodes: int = 0 | graphs |
def __repr__(self) -> str:
return str(self.connections) | graphs |