File size: 31,255 Bytes
ebc591b fc88e22 ebc591b cf9e214 983c3a7 fc88e22 983c3a7 f2ba714 983c3a7 ebc591b fc88e22 ebc591b fc88e22 ebc591b fc88e22 ebc591b f2ba714 b35ac2b fc88e22 b35ac2b ebc591b fc88e22 ebc591b fc88e22 ebc591b 983c3a7 ebc591b fc88e22 983c3a7 f2ba714 ebc591b 983c3a7 ebc591b cf9e214 ebc591b fc88e22 ebc591b 8f53421 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b 983c3a7 f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b f2ba714 ebc591b fc88e22 ebc591b cf9e214 ebc591b 8f53421 ebc591b f2ba714 ebc591b fc88e22 ebc591b fc88e22 ebc591b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"\n",
"from helpers import (\n",
" get_data_path_for_config,\n",
" get_combined_df,\n",
" save_final_df_as_jsonl,\n",
" handle_slug_column_mappings,\n",
" set_home_type,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"CONFIG_NAME = \"days_on_market\""
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"processing Metro_med_listings_price_cut_amt_uc_sfr_month.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfr_week.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_month.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfr_week.csv\n",
"processing Metro_med_doz_pending_uc_sfrcondo_month.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfr_sm_month.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_sm_month.csv\n",
"processing Metro_mean_days_to_close_uc_sfrcondo_week.csv\n",
"processing Metro_mean_days_to_close_uc_sfrcondo_month.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_sm_month.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfr_week.csv\n",
"processing Metro_median_days_to_close_uc_sfrcondo_sm_week.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfr_sm_week.csv\n",
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_sm_week.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfrcondo_week.csv\n",
"processing Metro_med_doz_pending_uc_sfrcondo_sm_month.csv\n",
"processing Metro_mean_days_to_close_uc_sfrcondo_sm_week.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_week.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfr_week.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_month.csv\n",
"processing Metro_mean_doz_pending_uc_sfrcondo_week.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_week.csv\n",
"processing Metro_median_days_to_close_uc_sfrcondo_week.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfr_sm_month.csv\n",
"processing Metro_mean_doz_pending_uc_sfrcondo_sm_month.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfr_sm_month.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfrcondo_sm_week.csv\n",
"processing Metro_median_days_to_close_uc_sfrcondo_sm_month.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfr_month.csv\n",
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_week.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_week.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_sm_week.csv\n",
"processing Metro_mean_days_to_close_uc_sfrcondo_sm_month.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfr_sm_week.csv\n",
"processing Metro_mean_doz_pending_uc_sfrcondo_sm_week.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_sm_week.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfr_sm_week.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfrcondo_sm_month.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfrcondo_month.csv\n",
"processing Metro_med_listings_price_cut_amt_uc_sfrcondo_sm_month.csv\n",
"processing Metro_med_doz_pending_uc_sfrcondo_sm_week.csv\n",
"processing Metro_med_listings_price_cut_perc_uc_sfrcondo_sm_week.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfr_month.csv\n",
"processing Metro_med_doz_pending_uc_sfrcondo_week.csv\n",
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_sm_month.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfr_sm_month.csv\n",
"processing Metro_median_days_to_close_uc_sfrcondo_month.csv\n",
"processing Metro_perc_listings_price_cut_uc_sfr_sm_week.csv\n",
"processing Metro_mean_listings_price_cut_perc_uc_sfrcondo_month.csv\n",
"processing Metro_mean_listings_price_cut_amt_uc_sfr_month.csv\n",
"processing Metro_mean_doz_pending_uc_sfrcondo_month.csv\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RegionID</th>\n",
" <th>SizeRank</th>\n",
" <th>RegionName</th>\n",
" <th>RegionType</th>\n",
" <th>StateName</th>\n",
" <th>Home Type</th>\n",
" <th>Date</th>\n",
" <th>Percent Listings Price Cut</th>\n",
" <th>Mean Listings Price Cut Amount</th>\n",
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
" <th>Median Days on Pending (Smoothed)</th>\n",
" <th>Median Days on Pending</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-06</td>\n",
" <td>NaN</td>\n",
" <td>13508.368375</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-13</td>\n",
" <td>0.049042</td>\n",
" <td>14114.788383</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-20</td>\n",
" <td>0.044740</td>\n",
" <td>14326.128956</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-27</td>\n",
" <td>0.047930</td>\n",
" <td>13998.585612</td>\n",
" <td>NaN</td>\n",
" <td>13998.585612</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-02-03</td>\n",
" <td>0.047622</td>\n",
" <td>14120.035549</td>\n",
" <td>0.047622</td>\n",
" <td>14120.035549</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586709</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-06</td>\n",
" <td>0.094017</td>\n",
" <td>NaN</td>\n",
" <td>0.037378</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586710</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-13</td>\n",
" <td>0.070175</td>\n",
" <td>NaN</td>\n",
" <td>0.043203</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586711</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-20</td>\n",
" <td>0.043478</td>\n",
" <td>NaN</td>\n",
" <td>0.054073</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586712</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-27</td>\n",
" <td>0.036697</td>\n",
" <td>NaN</td>\n",
" <td>0.061092</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586713</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-02-03</td>\n",
" <td>0.077670</td>\n",
" <td>NaN</td>\n",
" <td>0.057005</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>586714 rows × 13 columns</p>\n",
"</div>"
],
"text/plain": [
" RegionID SizeRank RegionName RegionType StateName Home Type \\\n",
"0 102001 0 United States country NaN SFR \n",
"1 102001 0 United States country NaN SFR \n",
"2 102001 0 United States country NaN SFR \n",
"3 102001 0 United States country NaN SFR \n",
"4 102001 0 United States country NaN SFR \n",
"... ... ... ... ... ... ... \n",
"586709 845172 769 Winfield, KS msa KS all homes \n",
"586710 845172 769 Winfield, KS msa KS all homes \n",
"586711 845172 769 Winfield, KS msa KS all homes \n",
"586712 845172 769 Winfield, KS msa KS all homes \n",
"586713 845172 769 Winfield, KS msa KS all homes \n",
"\n",
" Date Percent Listings Price Cut \\\n",
"0 2018-01-06 NaN \n",
"1 2018-01-13 0.049042 \n",
"2 2018-01-20 0.044740 \n",
"3 2018-01-27 0.047930 \n",
"4 2018-02-03 0.047622 \n",
"... ... ... \n",
"586709 2024-01-06 0.094017 \n",
"586710 2024-01-13 0.070175 \n",
"586711 2024-01-20 0.043478 \n",
"586712 2024-01-27 0.036697 \n",
"586713 2024-02-03 0.077670 \n",
"\n",
" Mean Listings Price Cut Amount Percent Listings Price Cut (Smoothed) \\\n",
"0 13508.368375 NaN \n",
"1 14114.788383 NaN \n",
"2 14326.128956 NaN \n",
"3 13998.585612 NaN \n",
"4 14120.035549 0.047622 \n",
"... ... ... \n",
"586709 NaN 0.037378 \n",
"586710 NaN 0.043203 \n",
"586711 NaN 0.054073 \n",
"586712 NaN 0.061092 \n",
"586713 NaN 0.057005 \n",
"\n",
" Mean Listings Price Cut Amount (Smoothed) \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 13998.585612 \n",
"4 14120.035549 \n",
"... ... \n",
"586709 NaN \n",
"586710 NaN \n",
"586711 NaN \n",
"586712 NaN \n",
"586713 NaN \n",
"\n",
" Median Days on Pending (Smoothed) Median Days on Pending \n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
"... ... ... \n",
"586709 NaN NaN \n",
"586710 NaN NaN \n",
"586711 NaN NaN \n",
"586712 NaN NaN \n",
"586713 NaN NaN \n",
"\n",
"[586714 rows x 13 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_frames = []\n",
"\n",
"exclude_columns = [\n",
" \"RegionID\",\n",
" \"SizeRank\",\n",
" \"RegionName\",\n",
" \"RegionType\",\n",
" \"StateName\",\n",
" \"Home Type\",\n",
"]\n",
"\n",
"slug_column_mappings = {\n",
" \"_mean_listings_price_cut_amt_\": \"Mean Listings Price Cut Amount\",\n",
" \"_med_doz_pending_\": \"Median Days on Pending\",\n",
" \"_median_days_to_pending_\": \"Median Days to Close\",\n",
" \"_perc_listings_price_cut_\": \"Percent Listings Price Cut\",\n",
"}\n",
"\n",
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
"\n",
"for filename in os.listdir(data_dir_path):\n",
" if filename.endswith(\".csv\"):\n",
" print(\"processing \" + filename)\n",
" # skip month files for now since they are redundant\n",
" if \"month\" in filename:\n",
" continue\n",
"\n",
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
"\n",
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
" cur_df = set_home_type(cur_df, filename)\n",
"\n",
" data_frames = handle_slug_column_mappings(\n",
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
" )\n",
"\n",
"\n",
"combined_df = get_combined_df(\n",
" data_frames,\n",
" [\n",
" \"RegionID\",\n",
" \"SizeRank\",\n",
" \"RegionName\",\n",
" \"RegionType\",\n",
" \"StateName\",\n",
" \"Home Type\",\n",
" \"Date\",\n",
" ],\n",
")\n",
"\n",
"combined_df"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Region ID</th>\n",
" <th>Size Rank</th>\n",
" <th>Region</th>\n",
" <th>Region Type</th>\n",
" <th>State</th>\n",
" <th>Home Type</th>\n",
" <th>Date</th>\n",
" <th>Percent Listings Price Cut</th>\n",
" <th>Mean Listings Price Cut Amount</th>\n",
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
" <th>Median Days on Pending (Smoothed)</th>\n",
" <th>Median Days on Pending</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-06</td>\n",
" <td>NaN</td>\n",
" <td>13508.368375</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-13</td>\n",
" <td>0.049042</td>\n",
" <td>14114.788383</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-20</td>\n",
" <td>0.044740</td>\n",
" <td>14326.128956</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-01-27</td>\n",
" <td>0.047930</td>\n",
" <td>13998.585612</td>\n",
" <td>NaN</td>\n",
" <td>13998.585612</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>102001</td>\n",
" <td>0</td>\n",
" <td>United States</td>\n",
" <td>country</td>\n",
" <td>NaN</td>\n",
" <td>SFR</td>\n",
" <td>2018-02-03</td>\n",
" <td>0.047622</td>\n",
" <td>14120.035549</td>\n",
" <td>0.047622</td>\n",
" <td>14120.035549</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586709</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-06</td>\n",
" <td>0.094017</td>\n",
" <td>NaN</td>\n",
" <td>0.037378</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586710</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-13</td>\n",
" <td>0.070175</td>\n",
" <td>NaN</td>\n",
" <td>0.043203</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586711</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-20</td>\n",
" <td>0.043478</td>\n",
" <td>NaN</td>\n",
" <td>0.054073</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586712</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-01-27</td>\n",
" <td>0.036697</td>\n",
" <td>NaN</td>\n",
" <td>0.061092</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586713</th>\n",
" <td>845172</td>\n",
" <td>769</td>\n",
" <td>Winfield, KS</td>\n",
" <td>msa</td>\n",
" <td>KS</td>\n",
" <td>all homes</td>\n",
" <td>2024-02-03</td>\n",
" <td>0.077670</td>\n",
" <td>NaN</td>\n",
" <td>0.057005</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>586714 rows × 13 columns</p>\n",
"</div>"
],
"text/plain": [
" Region ID Size Rank Region Region Type State Home Type \\\n",
"0 102001 0 United States country NaN SFR \n",
"1 102001 0 United States country NaN SFR \n",
"2 102001 0 United States country NaN SFR \n",
"3 102001 0 United States country NaN SFR \n",
"4 102001 0 United States country NaN SFR \n",
"... ... ... ... ... ... ... \n",
"586709 845172 769 Winfield, KS msa KS all homes \n",
"586710 845172 769 Winfield, KS msa KS all homes \n",
"586711 845172 769 Winfield, KS msa KS all homes \n",
"586712 845172 769 Winfield, KS msa KS all homes \n",
"586713 845172 769 Winfield, KS msa KS all homes \n",
"\n",
" Date Percent Listings Price Cut Mean Listings Price Cut Amount \\\n",
"0 2018-01-06 NaN 13508.368375 \n",
"1 2018-01-13 0.049042 14114.788383 \n",
"2 2018-01-20 0.044740 14326.128956 \n",
"3 2018-01-27 0.047930 13998.585612 \n",
"4 2018-02-03 0.047622 14120.035549 \n",
"... ... ... ... \n",
"586709 2024-01-06 0.094017 NaN \n",
"586710 2024-01-13 0.070175 NaN \n",
"586711 2024-01-20 0.043478 NaN \n",
"586712 2024-01-27 0.036697 NaN \n",
"586713 2024-02-03 0.077670 NaN \n",
"\n",
" Percent Listings Price Cut (Smoothed) \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 0.047622 \n",
"... ... \n",
"586709 0.037378 \n",
"586710 0.043203 \n",
"586711 0.054073 \n",
"586712 0.061092 \n",
"586713 0.057005 \n",
"\n",
" Mean Listings Price Cut Amount (Smoothed) \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 13998.585612 \n",
"4 14120.035549 \n",
"... ... \n",
"586709 NaN \n",
"586710 NaN \n",
"586711 NaN \n",
"586712 NaN \n",
"586713 NaN \n",
"\n",
" Median Days on Pending (Smoothed) Median Days on Pending \n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
"... ... ... \n",
"586709 NaN NaN \n",
"586710 NaN NaN \n",
"586711 NaN NaN \n",
"586712 NaN NaN \n",
"586713 NaN NaN \n",
"\n",
"[586714 rows x 13 columns]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Adjust column names\n",
"final_df = combined_df.rename(\n",
" columns={\n",
" \"RegionID\": \"Region ID\",\n",
" \"SizeRank\": \"Size Rank\",\n",
" \"RegionName\": \"Region\",\n",
" \"RegionType\": \"Region Type\",\n",
" \"StateName\": \"State\",\n",
" }\n",
")\n",
"\n",
"final_df[\"Date\"] = pd.to_datetime(final_df[\"Date\"], format=\"%Y-%m-%d\")\n",
"\n",
"final_df"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|