Datasets:
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: unarXive citation recommendation
size_categories:
- 1M<n<10M
tags:
- arXiv.org
- arXiv
- citation recommendation
- citation
- reference
- publication
- paper
- preprint
- section
- physics
- mathematics
- computer science
- cs
task_categories:
- text-classification
task_ids:
- multi-class-classification
source_datasets:
- extended|10.5281/zenodo.7752615
dataset_info:
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: marker
dtype: string
- name: marker_offsets
sequence:
sequence: int64
- name: label
dtype: string
config_name: .
splits:
- name: train
num_bytes: 5457336094
num_examples: 2043192
- name: test
num_bytes: 551012459
num_examples: 225084
- name: validation
num_bytes: 586422261
num_examples: 225348
download_size: 7005370567
dataset_size: 6594770814
Dataset Card for unarXive citation recommendation
Dataset Description
- Homepage: https://github.com/IllDepence/unarXive
- Paper: unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Dataset Summary
The unarXive citation recommendation dataset contains 2.5 Million paragraphs from computer science papers and with an annotated citation marker. The paragraphs and citation information is derived from unarXive.
Note that citation infromation is only given as the OpenAlex ID of the cited paper. An important consideration for models is therefore if the data is used as is, or if additional information of the cited papers (metadata, abstracts, full-text, etc.) is used.
The dataset can be used as follows.
from datasets import load_dataset
citrec_data = load_dataset('saier/unarXive_citrec')
citrec_data = citrec_data.class_encode_column('label') # assign target label column
citrec_data = citrec_data.remove_columns('_id') # remove sample ID column
Dataset Structure
Data Instances
Each data instance contains the paragraph’s text as well as information on one of the contained citation markers, in the form of a label (cited document OpenAlex ID), citation marker, and citation marker offset. An example is shown below.
{'_id': '7c1464bb-1f0f-4b38-b1a3-85754eaf6ad1',
'label': 'https://openalex.org/W3115081393',
'marker': '[1]',
'marker_offsets': [[316, 319]],
'text': 'Data: For sentiment analysis on Hindi-English CM tweets, we used the '
'dataset provided by the organizers of Task 9 at SemEval-2020.\n'
'The training dataset consists of 14 thousand tweets.\n'
'Whereas, the validation dataset as well as the test dataset contain '
'3 thousand tweets each.\n'
'The details of the dataset are given in [1]}.\n'
'For this task, we did not use any external dataset.\n'}
Data Splits
The data is split into training, development, and testing data as follows.
- Training: 2,043,192 instances
- Development: 225,084 instances
- Testing: 225,348 instances
Dataset Creation
Source Data
The paragraph texts are extracted from the data set unarXive.
Who are the source language producers?
The paragraphs were written by the authors of the arXiv papers. In file license_info.jsonl
author and text licensing information can be found for all samples, An example is shown below.
{'authors': 'Yusuke Sekikawa, Teppei Suzuki',
'license': 'http://creativecommons.org/licenses/by/4.0/',
'paper_arxiv_id': '2011.09852',
'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
'18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
'0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
'd85e46cf-b11d-49b6-801b-089aa2dd037d',
'92915cea-17ab-4a98-aad2-417f6cdd53d2',
'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
'4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
'59003494-096f-4a7c-ad65-342b74eed561',
'6a99b3f5-217e-4d3d-a770-693483ef8670']}
Annotations
Citation information in unarXive is automatically determined (see implementation).
Additional Information
Licensing information
The dataset is released under the Creative Commons Attribution-ShareAlike 4.0.
Citation Information
@inproceedings{Saier2023unarXive,
author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
year = {2023},
series = {JCDL '23}
}