Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1M - 10M
ArXiv:
License:
annotations_creators: | |
- machine-generated | |
language: | |
- en | |
language_creators: | |
- found | |
license: | |
- cc-by-sa-4.0 | |
multilinguality: | |
- monolingual | |
pretty_name: unarXive citation recommendation | |
size_categories: | |
- 1M<n<10M | |
tags: | |
- arXiv.org | |
- arXiv | |
- citation recommendation | |
- citation | |
- reference | |
- publication | |
- paper | |
- preprint | |
- section | |
- physics | |
- mathematics | |
- computer science | |
- cs | |
task_categories: | |
- text-classification | |
task_ids: | |
- multi-class-classification | |
source_datasets: | |
- extended|10.5281/zenodo.7752615 | |
dataset_info: | |
features: | |
- name: _id | |
dtype: string | |
- name: text | |
dtype: string | |
- name: marker | |
dtype: string | |
- name: marker_offsets | |
sequence: | |
sequence: int64 | |
- name: label | |
dtype: string | |
config_name: . | |
splits: | |
- name: train | |
num_bytes: 5457336094 | |
num_examples: 2043192 | |
- name: test | |
num_bytes: 551012459 | |
num_examples: 225084 | |
- name: validation | |
num_bytes: 586422261 | |
num_examples: 225348 | |
download_size: 7005370567 | |
dataset_size: 6594770814 | |
# Dataset Card for unarXive citation recommendation | |
## Dataset Description | |
* **Homepage:** [https://github.com/IllDepence/unarXive](https://github.com/IllDepence/unarXive) | |
* **Paper:** [unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network](https://arxiv.org/abs/2303.14957) | |
### Dataset Summary | |
The unarXive citation recommendation dataset contains 2.5 Million paragraphs from computer science papers and with an annotated citation marker. The paragraphs and citation information is derived from [unarXive](https://github.com/IllDepence/unarXive). | |
Note that citation infromation is only given as the [OpenAlex](https://openalex.org/) ID of the cited paper. An important consideration for models is therefore if the data is used *as is*, or if additional information of the cited papers (metadata, abstracts, full-text, etc.) is used. | |
The dataset can be used as follows. | |
``` | |
from datasets import load_dataset | |
citrec_data = load_dataset('saier/unarXive_citrec') | |
citrec_data = citrec_data.class_encode_column('label') # assign target label column | |
citrec_data = citrec_data.remove_columns('_id') # remove sample ID column | |
``` | |
## Dataset Structure | |
### Data Instances | |
Each data instance contains the paragraph’s text as well as information on one of the contained citation markers, in the form of a label (cited document OpenAlex ID), citation marker, and citation marker offset. An example is shown below. | |
``` | |
{'_id': '7c1464bb-1f0f-4b38-b1a3-85754eaf6ad1', | |
'label': 'https://openalex.org/W3115081393', | |
'marker': '[1]', | |
'marker_offsets': [[316, 319]], | |
'text': 'Data: For sentiment analysis on Hindi-English CM tweets, we used the ' | |
'dataset provided by the organizers of Task 9 at SemEval-2020.\n' | |
'The training dataset consists of 14 thousand tweets.\n' | |
'Whereas, the validation dataset as well as the test dataset contain ' | |
'3 thousand tweets each.\n' | |
'The details of the dataset are given in [1]}.\n' | |
'For this task, we did not use any external dataset.\n'} | |
``` | |
### Data Splits | |
The data is split into training, development, and testing data as follows. | |
* Training: 2,043,192 instances | |
* Development: 225,084 instances | |
* Testing: 225,348 instances | |
## Dataset Creation | |
### Source Data | |
The paragraph texts are extracted from the data set [unarXive](https://github.com/IllDepence/unarXive). | |
#### Who are the source language producers? | |
The paragraphs were written by the authors of the arXiv papers. In file `license_info.jsonl` author and text licensing information can be found for all samples, An example is shown below. | |
``` | |
{'authors': 'Yusuke Sekikawa, Teppei Suzuki', | |
'license': 'http://creativecommons.org/licenses/by/4.0/', | |
'paper_arxiv_id': '2011.09852', | |
'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8', | |
'18dc073e-a48e-488e-b34c-e5fc3cb8a4ca', | |
'0c2e89b3-d863-4bc2-9e11-8f6c48d867cb', | |
'd85e46cf-b11d-49b6-801b-089aa2dd037d', | |
'92915cea-17ab-4a98-aad2-417f6cdd53d2', | |
'e88cb422-47b7-4f69-9b0b-fbddf8140d98', | |
'4f5094a4-0e6e-46ae-a34d-e15ce0b9803c', | |
'59003494-096f-4a7c-ad65-342b74eed561', | |
'6a99b3f5-217e-4d3d-a770-693483ef8670']} | |
``` | |
### Annotations | |
Citation information in unarXive is automatically determined ([see implementation](https://github.com/IllDepence/unarXive/blob/master/src/match_references_openalex.py)). | |
<!-- | |
## Considerations for Using the Data | |
### Discussion and Biases | |
TODO | |
### Other Known Limitations | |
TODO | |
--> | |
## Additional Information | |
### Licensing information | |
The dataset is released under the Creative Commons Attribution-ShareAlike 4.0. | |
### Citation Information | |
``` | |
@inproceedings{Saier2023unarXive, | |
author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael}, | |
title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}}, | |
booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries}, | |
year = {2023}, | |
series = {JCDL '23} | |
} | |
``` | |