text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
"size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "None" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the weighted mean of the output is taken, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Shape: * Input: (N, C) or (C), where C = number of classes, or (N, C, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss. * Target: (N) or (), where each value is 0 \leq \text{targets}[i] \leq C-1, or (N, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss.
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
pytorch docs
\geq 1 in the case of K-dimensional loss. * Output: If "reduction" is "'none'", shape (N) or (N, d_1, d_2, ..., d_K) with K \geq 1 in the case of K-dimensional loss. Otherwise, scalar. Examples: >>> m = nn.LogSoftmax(dim=1) >>> loss = nn.NLLLoss() >>> # input is of size N x C = 3 x 5 >>> input = torch.randn(3, 5, requires_grad=True) >>> # each element in target has to have 0 <= value < C >>> target = torch.tensor([1, 0, 4]) >>> output = loss(m(input), target) >>> output.backward() >>> >>> >>> # 2D loss example (used, for example, with image inputs) >>> N, C = 5, 4 >>> loss = nn.NLLLoss() >>> # input is of size N x C x height x width >>> data = torch.randn(N, 16, 10, 10) >>> conv = nn.Conv2d(16, C, (3, 3)) >>> m = nn.LogSoftmax(dim=1) >>> # each element in target has to have 0 <= value < C >>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
pytorch docs
output = loss(m(conv(data)), target) >>> output.backward()
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
pytorch docs
CUDAPluggableAllocator class torch.cuda.CUDAPluggableAllocator(path_to_so_file, alloc_fn_name, free_fn_name) CUDA memory allocator loaded from a so file. Memory allocators are compiled in .so files and loaded dynamically using ctypes. To change the active allocator use the "torch.memory.cuda.change_current_allocator()" function. Parameters: * path_to_so_file (str) -- Path in the filesystem to the .so file containing the allocator functions * **alloc_fn_name** (*str*) -- Name of the function to perform the memory allocation in the so file. The signature must be: void* alloc_fn_name(ssize_t size, int device, cudaStream_t stream); * **free_fn_name** (*str*) -- Name of the function to perform the memory release in the so file. The signature must be: void free_fn_name(void* ptr, size_t size, cudaStream_t stream); Warning: This is currently supported only in unix OSs Note:
https://pytorch.org/docs/stable/generated/torch.cuda.CUDAPluggableAllocator.html
pytorch docs
Note: See Memory management for details on creating and using a custom allocator
https://pytorch.org/docs/stable/generated/torch.cuda.CUDAPluggableAllocator.html
pytorch docs
torch.set_deterministic_debug_mode torch.set_deterministic_debug_mode(debug_mode) Sets the debug mode for deterministic operations. Note: This is an alternative interface for "torch.use_deterministic_algorithms()". Refer to that function's documentation for details about affected operations. Parameters: debug_mode (str or int) -- If "default" or 0, don't error or warn on nondeterministic operations. If "warn" or 1, warn on nondeterministic operations. If "error" or 2, error on nondeterministic operations.
https://pytorch.org/docs/stable/generated/torch.set_deterministic_debug_mode.html
pytorch docs
torch.Tensor.is_coalesced Tensor.is_coalesced() -> bool Returns "True" if "self" is a sparse COO tensor that is coalesced, "False" otherwise. Warning: Throws an error if "self" is not a sparse COO tensor. See "coalesce()" and uncoalesced tensors.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_coalesced.html
pytorch docs
ReLU6 class torch.ao.nn.quantized.ReLU6(inplace=False) Applies the element-wise function: \text{ReLU6}(x) = \min(\max(x_0, x), q(6)), where x_0 is the zero_point, and q(6) is the quantized representation of number 6. Parameters: inplace (bool) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (N, *) where *** means, any number of additional dimensions * Output: (N, *), same shape as the input [image] Examples: >>> m = nn.quantized.ReLU6() >>> input = torch.randn(2) >>> input = torch.quantize_per_tensor(input, 1.0, 0, dtype=torch.qint32) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.ReLU6.html
pytorch docs
torch.cumsum torch.cumsum(input, dim, *, dtype=None, out=None) -> Tensor Returns the cumulative sum of elements of "input" in the dimension "dim". For example, if "input" is a vector of size N, the result will also be a vector of size N, with elements. y_i = x_1 + x_2 + x_3 + \dots + x_i Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to do the operation over Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> a = torch.randn(10) >>> a tensor([-0.8286, -0.4890, 0.5155, 0.8443, 0.1865, -0.1752, -2.0595, 0.1850, -1.1571, -0.4243]) >>> torch.cumsum(a, dim=0)
https://pytorch.org/docs/stable/generated/torch.cumsum.html
pytorch docs
torch.cumsum(a, dim=0) tensor([-0.8286, -1.3175, -0.8020, 0.0423, 0.2289, 0.0537, -2.0058, -1.8209, -2.9780, -3.4022])
https://pytorch.org/docs/stable/generated/torch.cumsum.html
pytorch docs
torch.autograd.graph.Node.name abstract Node.name() Returns the name. Example: >>> import torch >>> a = torch.tensor([0., 0., 0.], requires_grad=True) >>> b = a.clone() >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node) >>> print(b.grad_fn.name()) CloneBackward0 Return type: str
https://pytorch.org/docs/stable/generated/torch.autograd.graph.Node.name.html
pytorch docs
set_multithreading_enabled class torch.autograd.set_multithreading_enabled(mode) Context-manager that sets multithreaded backwards on or off. "set_multithreading_enabled" will enable or disable multithreaded backwards based on its argument "mode". It can be used as a context-manager or as a function. This context manager is thread local; it will not affect computation in other threads. Parameters: mode (bool) -- Flag whether to enable multithreaded backwards ("True"), or disable ("False"). Note: This API does not apply to forward-mode AD.
https://pytorch.org/docs/stable/generated/torch.autograd.set_multithreading_enabled.html
pytorch docs
torch.Tensor.is_pinned Tensor.is_pinned() Returns true if this tensor resides in pinned memory.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_pinned.html
pytorch docs
torch.signal.windows.gaussian torch.signal.windows.gaussian(M, *, std=1.0, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes a window with a gaussian waveform. The gaussian window is defined as follows: w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)} The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * std (float, optional) -- the standard deviation of the gaussian. It controls how narrow or wide the window is. Default: 1.0. * **sym** (*bool**, **optional*) -- If *False*, returns a periodic window suitable for use in spectral analysis. If *True*, returns a symmetric window suitable for use in filter design. Default: *True*.
https://pytorch.org/docs/stable/generated/torch.signal.windows.gaussian.html
pytorch docs
design. Default: True. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor Examples: >>> # Generates a symmetric gaussian window with a standard deviation of 1.0. >>> torch.signal.windows.gaussian(10)
https://pytorch.org/docs/stable/generated/torch.signal.windows.gaussian.html
pytorch docs
torch.signal.windows.gaussian(10) tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05]) >>> # Generates a periodic gaussian window and standard deviation equal to 0.9. >>> torch.signal.windows.gaussian(10, sym=False,std=0.9) tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
https://pytorch.org/docs/stable/generated/torch.signal.windows.gaussian.html
pytorch docs
torch.Tensor.isposinf Tensor.isposinf() -> Tensor See "torch.isposinf()"
https://pytorch.org/docs/stable/generated/torch.Tensor.isposinf.html
pytorch docs
torch.Tensor.gather Tensor.gather(dim, index) -> Tensor See "torch.gather()"
https://pytorch.org/docs/stable/generated/torch.Tensor.gather.html
pytorch docs
torch.linalg.lu_factor torch.linalg.lu_factor(A, *, bool pivot=True, out=None) -> (Tensor, Tensor) Computes a compact representation of the LU factorization with partial pivoting of a matrix. This function computes a compact representation of the decomposition given by "torch.linalg.lu()". If the matrix is square, this representation may be used in "torch.linalg.lu_solve()" to solve system of linear equations that share the matrix "A". The returned decomposition is represented as a named tuple (LU, pivots). The "LU" matrix has the same shape as the input matrix "A". Its upper and lower triangular parts encode the non-constant elements of "L" and "U" of the LU decomposition of "A". The returned permutation matrix is represented by a 1-indexed vector. pivots[i] == j represents that in the i-th step of the algorithm, the i-th row was permuted with the j-1-th row. On CUDA, one may use "pivot"= False. In this case, this function
https://pytorch.org/docs/stable/generated/torch.linalg.lu_factor.html
pytorch docs
returns the LU decomposition without pivoting if it exists. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. Note: When inputs are on a CUDA device, this function synchronizes that device with the CPU. For a version of this function that does not synchronize, see "torch.linalg.lu_factor_ex()". Warning: The LU decomposition is almost never unique, as often there are different permutation matrices that can yield different LU decompositions. As such, different platforms, like SciPy, or inputs on different devices, may produce different valid decompositions.Gradient computations are only supported if the input matrix is full-rank. If this condition is not met, no error will be thrown, but the gradient may not be finite. This is because the LU decomposition with pivoting is not differentiable
https://pytorch.org/docs/stable/generated/torch.linalg.lu_factor.html
pytorch docs
at these points. See also: "torch.linalg.lu_solve()" solves a system of linear equations given the output of this function provided the input matrix was square and invertible. "torch.lu_unpack()" unpacks the tensors returned by "lu_factor()" into the three matrices *P, L, U* that form the decomposition. "torch.linalg.lu()" computes the LU decomposition with partial pivoting of a possibly non-square matrix. It is a composition of "lu_factor()" and "torch.lu_unpack()". "torch.linalg.solve()" solves a system of linear equations. It is a composition of "lu_factor()" and "lu_solve()". Parameters: A (Tensor) -- tensor of shape (, m, n)* where *** is zero or more batch dimensions. Keyword Arguments: * pivot (bool, optional) -- Whether to compute the LU decomposition with partial pivoting, or the regular LU decomposition. "pivot"= False not supported on CPU. Default: True.
https://pytorch.org/docs/stable/generated/torch.linalg.lu_factor.html
pytorch docs
True. * **out** (*tuple**, **optional*) -- tuple of two tensors to write the output to. Ignored if *None*. Default: *None*. Returns: A named tuple (LU, pivots). Raises: RuntimeError -- if the "A" matrix is not invertible or any matrix in a batched "A" is not invertible. Examples: >>> A = torch.randn(2, 3, 3) >>> B1 = torch.randn(2, 3, 4) >>> B2 = torch.randn(2, 3, 7) >>> A_factor = torch.linalg.lu_factor(A) >>> X1 = torch.linalg.lu_solve(A_factor, B1) >>> X2 = torch.linalg.lu_solve(A_factor, B2) >>> torch.allclose(A @ X1, B1) True >>> torch.allclose(A @ X2, B2) True
https://pytorch.org/docs/stable/generated/torch.linalg.lu_factor.html
pytorch docs
torch.logical_not torch.logical_not(input, *, out=None) -> Tensor Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool dtype. If the input tensor is not a bool tensor, zeros are treated as "False" and non-zeros are treated as "True". Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.logical_not(torch.tensor([True, False])) tensor([False, True]) >>> torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8)) tensor([ True, False, False]) >>> torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double)) tensor([ True, False, False]) >>> torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16)) tensor([1, 0, 0], dtype=torch.int16)
https://pytorch.org/docs/stable/generated/torch.logical_not.html
pytorch docs
LazyConvTranspose3d class torch.nn.LazyConvTranspose3d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) A "torch.nn.ConvTranspose3d" module with lazy initialization of the "in_channels" argument of the "ConvTranspose3d" that is inferred from the "input.size(1)". The attributes that will be lazily initialized are weight and bias. Check the "torch.nn.modules.lazy.LazyModuleMixin" for further documentation on lazy modules and their limitations. Parameters: * out_channels (int) -- Number of channels produced by the convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- "dilation * (kernel_size - 1) - padding" zero-padding will be added to
https://pytorch.org/docs/stable/generated/torch.nn.LazyConvTranspose3d.html
pytorch docs
both sides of each dimension in the input. Default: 0 * **output_padding** (*int** or **tuple**, **optional*) -- Additional size added to one side of each dimension in the output shape. Default: 0 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 See also: "torch.nn.ConvTranspose3d" and "torch.nn.modules.lazy.LazyModuleMixin" cls_to_become alias of "ConvTranspose3d"
https://pytorch.org/docs/stable/generated/torch.nn.LazyConvTranspose3d.html
pytorch docs
torch.Tensor.logit Tensor.logit() -> Tensor See "torch.logit()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logit.html
pytorch docs
torch.nn.functional.hardtanh_ torch.nn.functional.hardtanh_(input, min_val=- 1., max_val=1.) -> Tensor In-place version of "hardtanh()".
https://pytorch.org/docs/stable/generated/torch.nn.functional.hardtanh_.html
pytorch docs
torch.cuda.reset_max_memory_allocated torch.cuda.reset_max_memory_allocated(device=None) Resets the starting point in tracking maximum GPU memory occupied by tensors for a given device. See "max_memory_allocated()" for details. Parameters: device (torch.device or int, optional) -- selected device. Returns statistic for the current device, given by "current_device()", if "device" is "None" (default). Warning: This function now calls "reset_peak_memory_stats()", which resets /all/ peak memory stats. Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.reset_max_memory_allocated.html
pytorch docs
torch.Tensor.dense_dim Tensor.dense_dim() -> int Return the number of dense dimensions in a sparse tensor "self". Note: Returns "len(self.shape)" if "self" is not a sparse tensor. See also "Tensor.sparse_dim()" and hybrid tensors.
https://pytorch.org/docs/stable/generated/torch.Tensor.dense_dim.html
pytorch docs
torch.Tensor.expm1_ Tensor.expm1_() -> Tensor In-place version of "expm1()"
https://pytorch.org/docs/stable/generated/torch.Tensor.expm1_.html
pytorch docs
torch.cuda.initial_seed torch.cuda.initial_seed() Returns the current random seed of the current GPU. Warning: This function eagerly initializes CUDA. Return type: int
https://pytorch.org/docs/stable/generated/torch.cuda.initial_seed.html
pytorch docs
torch.Tensor.pow_ Tensor.pow_(exponent) -> Tensor In-place version of "pow()"
https://pytorch.org/docs/stable/generated/torch.Tensor.pow_.html
pytorch docs
PruningContainer class torch.nn.utils.prune.PruningContainer(*args) Container holding a sequence of pruning methods for iterative pruning. Keeps track of the order in which pruning methods are applied and handles combining successive pruning calls. Accepts as argument an instance of a BasePruningMethod or an iterable of them. add_pruning_method(method) Adds a child pruning "method" to the container. Parameters: **method** (*subclass of BasePruningMethod*) -- child pruning method to be added to the container. classmethod apply(module, name, args, importance_scores=None, *kwargs) Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Parameters: * **module** (*nn.Module*) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.PruningContainer.html
pytorch docs
pruning will act. * **args** -- arguments passed on to a subclass of "BasePruningMethod" * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the parameter will be used in its place. * **kwargs** -- keyword arguments passed on to a subclass of a "BasePruningMethod" apply_mask(module) Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Parameters: **module** (*nn.Module*) -- module containing the tensor to prune Returns: pruned version of the input tensor
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.PruningContainer.html
pytorch docs
pruned version of the input tensor Return type: pruned_tensor (torch.Tensor) compute_mask(t, default_mask) Applies the latest "method" by computing the new partial masks and returning its combination with the "default_mask". The new partial mask should be computed on the entries or channels that were not zeroed out by the "default_mask". Which portions of the tensor "t" the new mask will be calculated from depends on the "PRUNING_TYPE" (handled by the type handler): * for 'unstructured', the mask will be computed from the raveled list of nonmasked entries; * for 'structured', the mask will be computed from the nonmasked channels in the tensor; * for 'global', the mask will be computed across all entries. Parameters: * **t** (*torch.Tensor*) -- tensor representing the parameter to prune (of same dimensions as "default_mask").
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.PruningContainer.html
pytorch docs
default_mask (torch.Tensor) -- mask from previous pruning iteration. Returns: new mask that combines the effects of the "default_mask" and the new mask from the current pruning "method" (of same dimensions as "default_mask" and "t"). Return type: mask (torch.Tensor) prune(t, default_mask=None, importance_scores=None) Computes and returns a pruned version of input tensor "t" according to the pruning rule specified in "compute_mask()". Parameters: * **t** (*torch.Tensor*) -- tensor to prune (of same dimensions as "default_mask"). * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as "t") used to compute mask for pruning "t". The values in this tensor indicate the importance of the corresponding elements in the "t" that is being pruned. If unspecified or None, the tensor
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.PruningContainer.html
pytorch docs
"t" will be used in its place. * **default_mask** (*torch.Tensor**, **optional*) -- mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones. Returns: pruned version of tensor "t". remove(module) Removes the pruning reparameterization from a module. The pruned parameter named "name" remains permanently pruned, and the parameter named "name+'_orig'" is removed from the parameter list. Similarly, the buffer named "name+'_mask'" is removed from the buffers. Note: Pruning itself is NOT undone or reversed!
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.PruningContainer.html
pytorch docs
torch.permute torch.permute(input, dims) -> Tensor Returns a view of the original tensor "input" with its dimensions permuted. Parameters: * input (Tensor) -- the input tensor. * **dims** (*tuple of python:int*) -- The desired ordering of dimensions -[ Example ]- x = torch.randn(2, 3, 5) x.size() torch.Size([2, 3, 5]) torch.permute(x, (2, 0, 1)).size() torch.Size([5, 2, 3])
https://pytorch.org/docs/stable/generated/torch.permute.html
pytorch docs
torch.Tensor.le_ Tensor.le_(other) -> Tensor In-place version of "le()".
https://pytorch.org/docs/stable/generated/torch.Tensor.le_.html
pytorch docs
torch.movedim torch.movedim(input, source, destination) -> Tensor Moves the dimension(s) of "input" at the position(s) in "source" to the position(s) in "destination". Other dimensions of "input" that are not explicitly moved remain in their original order and appear at the positions not specified in "destination". Parameters: * input (Tensor) -- the input tensor. * **source** (*int** or **tuple of ints*) -- Original positions of the dims to move. These must be unique. * **destination** (*int** or **tuple of ints*) -- Destination positions for each of the original dims. These must also be unique. Examples: >>> t = torch.randn(3,2,1) >>> t tensor([[[-0.3362], [-0.8437]], [[-0.9627], [ 0.1727]], [[ 0.5173], [-0.1398]]]) >>> torch.movedim(t, 1, 0).shape torch.Size([2, 3, 1]) >>> torch.movedim(t, 1, 0)
https://pytorch.org/docs/stable/generated/torch.movedim.html
pytorch docs
torch.movedim(t, 1, 0) tensor([[[-0.3362], [-0.9627], [ 0.5173]], [[-0.8437], [ 0.1727], [-0.1398]]]) >>> torch.movedim(t, (1, 2), (0, 1)).shape torch.Size([2, 1, 3]) >>> torch.movedim(t, (1, 2), (0, 1)) tensor([[[-0.3362, -0.9627, 0.5173]], [[-0.8437, 0.1727, -0.1398]]])
https://pytorch.org/docs/stable/generated/torch.movedim.html
pytorch docs
CustomFromMask class torch.nn.utils.prune.CustomFromMask(mask) classmethod apply(module, name, mask) Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Parameters: * **module** (*nn.Module*) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. apply_mask(module) Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Parameters: **module** (*nn.Module*) -- module containing the tensor to prune Returns: pruned version of the input tensor Return type: pruned_tensor (torch.Tensor) prune(t, default_mask=None, importance_scores=None)
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.CustomFromMask.html
pytorch docs
Computes and returns a pruned version of input tensor "t" according to the pruning rule specified in "compute_mask()". Parameters: * **t** (*torch.Tensor*) -- tensor to prune (of same dimensions as "default_mask"). * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as "t") used to compute mask for pruning "t". The values in this tensor indicate the importance of the corresponding elements in the "t" that is being pruned. If unspecified or None, the tensor "t" will be used in its place. * **default_mask** (*torch.Tensor**, **optional*) -- mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones. Returns: pruned version of tensor "t". remove(module)
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.CustomFromMask.html
pytorch docs
remove(module) Removes the pruning reparameterization from a module. The pruned parameter named "name" remains permanently pruned, and the parameter named "name+'_orig'" is removed from the parameter list. Similarly, the buffer named "name+'_mask'" is removed from the buffers. Note: Pruning itself is NOT undone or reversed!
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.CustomFromMask.html
pytorch docs
torch.foreach_expm1 torch.foreach_expm1(self: List[Tensor]) -> None Apply "torch.expm1()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_expm1_.html
pytorch docs
torch.Tensor.greater Tensor.greater(other) -> Tensor See "torch.greater()".
https://pytorch.org/docs/stable/generated/torch.Tensor.greater.html
pytorch docs
torch.linalg.eigvalsh torch.linalg.eigvalsh(A, UPLO='L', *, out=None) -> Tensor Computes the eigenvalues of a complex Hermitian or real symmetric matrix. Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, the eigenvalues of a complex Hermitian or real symmetric matrix A \in \mathbb{K}^{n \times n} are defined as the roots (counted with multiplicity) of the polynomial p of degree n given by p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{R}} where \mathrm{I}_n is the n-dimensional identity matrix. The eigenvalues of a real symmetric or complex Hermitian matrix are always real. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. The eigenvalues are returned in ascending order. "A" is assumed to be Hermitian (resp. symmetric), but this is not
https://pytorch.org/docs/stable/generated/torch.linalg.eigvalsh.html
pytorch docs
checked internally, instead: If "UPLO"= 'L' (default), only the lower triangular part of the matrix is used in the computation. If "UPLO"= 'U', only the upper triangular part of the matrix is used. Note: When inputs are on a CUDA device, this function synchronizes that device with the CPU. See also: "torch.linalg.eigh()" computes the full eigenvalue decomposition. Parameters: * A (Tensor) -- tensor of shape (, n, n)* where *** is zero or more batch dimensions consisting of symmetric or Hermitian matrices. * **UPLO** (*'L'**, **'U'**, **optional*) -- controls whether to use the upper or lower triangular part of "A" in the computations. Default: *'L'*. Keyword Arguments: out (Tensor, optional) -- output tensor. Ignored if None. Default: None. Returns: A real-valued tensor containing the eigenvalues even when "A" is
https://pytorch.org/docs/stable/generated/torch.linalg.eigvalsh.html
pytorch docs
complex. The eigenvalues are returned in ascending order. Examples: >>> A = torch.randn(2, 2, dtype=torch.complex128) >>> A = A + A.T.conj() # creates a Hermitian matrix >>> A tensor([[2.9228+0.0000j, 0.2029-0.0862j], [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128) >>> torch.linalg.eigvalsh(A) tensor([0.3277, 2.9415], dtype=torch.float64) >>> A = torch.randn(3, 2, 2, dtype=torch.float64) >>> A = A + A.mT # creates a batch of symmetric matrices >>> torch.linalg.eigvalsh(A) tensor([[ 2.5797, 3.4629], [-4.1605, 1.3780], [-3.1113, 2.7381]], dtype=torch.float64)
https://pytorch.org/docs/stable/generated/torch.linalg.eigvalsh.html
pytorch docs
torch.nn.functional.adaptive_max_pool3d torch.nn.functional.adaptive_max_pool3d(args, *kwargs) Applies a 3D adaptive max pooling over an input signal composed of several input planes. See "AdaptiveMaxPool3d" for details and output shape. Parameters: * output_size -- the target output size (single integer or triple-integer tuple) * **return_indices** -- whether to return pooling indices. Default: "False"
https://pytorch.org/docs/stable/generated/torch.nn.functional.adaptive_max_pool3d.html
pytorch docs
torch.mv torch.mv(input, vec, *, out=None) -> Tensor Performs a matrix-vector product of the matrix "input" and the vector "vec". If "input" is a (n \times m) tensor, "vec" is a 1-D tensor of size m, "out" will be 1-D of size n. Note: This function does not broadcast. Parameters: * input (Tensor) -- matrix to be multiplied * **vec** (*Tensor*) -- vector to be multiplied Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.mv(mat, vec) tensor([ 1.0404, -0.6361])
https://pytorch.org/docs/stable/generated/torch.mv.html
pytorch docs
torch.Tensor.median Tensor.median(dim=None, keepdim=False) See "torch.median()"
https://pytorch.org/docs/stable/generated/torch.Tensor.median.html
pytorch docs
default_qat_qconfig torch.quantization.qconfig.default_qat_qconfig alias of QConfig(activation=functools.partial(, observer=, quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True){}, weight=functools.partial(, observer=, quant_min=-128, quant_max=127, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, reduce_range=False){})
https://pytorch.org/docs/stable/generated/torch.quantization.qconfig.default_qat_qconfig.html
pytorch docs
torch.Tensor.set_ Tensor.set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor Sets the underlying storage, size, and strides. If "source" is a tensor, "self" tensor will share the same storage and have the same size and strides as "source". Changes to elements in one tensor will be reflected in the other. If "source" is a "Storage", the method sets the underlying storage, offset, size, and stride. Parameters: * source (Tensor or Storage) -- the tensor or storage to use * **storage_offset** (*int**, **optional*) -- the offset in the storage * **size** (*torch.Size**, **optional*) -- the desired size. Defaults to the size of the source. * **stride** (*tuple**, **optional*) -- the desired stride. Defaults to C-contiguous strides.
https://pytorch.org/docs/stable/generated/torch.Tensor.set_.html
pytorch docs
torch.amax torch.amax(input, dim, keepdim=False, *, out=None) -> Tensor Returns the maximum value of each slice of the "input" tensor in the given dimension(s) "dim". Note: The difference between "max"/"min" and "amax"/"amin" is: * "amax"/"amin" supports reducing on multiple dimensions, * "amax"/"amin" does not return indices, * "amax"/"amin" evenly distributes gradient between equal values, while "max(dim)"/"min(dim)" propagates gradient only to a single index in the source tensor. If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints*) -- the dimension or dimensions to reduce.
https://pytorch.org/docs/stable/generated/torch.amax.html
pytorch docs
dimensions to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.8177, 1.4878, -0.2491, 0.9130], [-0.7158, 1.1775, 2.0992, 0.4817], [-0.0053, 0.0164, -1.3738, -0.0507], [ 1.9700, 1.1106, -1.0318, -1.0816]]) >>> torch.amax(a, 1) tensor([1.4878, 2.0992, 0.0164, 1.9700])
https://pytorch.org/docs/stable/generated/torch.amax.html
pytorch docs
torch.cuda.manual_seed torch.cuda.manual_seed(seed) Sets the seed for generating random numbers for the current GPU. It's safe to call this function if CUDA is not available; in that case, it is silently ignored. Parameters: seed (int) -- The desired seed. Warning: If you are working with a multi-GPU model, this function is insufficient to get determinism. To seed all GPUs, use "manual_seed_all()".
https://pytorch.org/docs/stable/generated/torch.cuda.manual_seed.html
pytorch docs
torch.lobpcg torch.lobpcg(A, k=None, B=None, X=None, n=None, iK=None, niter=None, tol=None, largest=None, method=None, tracker=None, ortho_iparams=None, ortho_fparams=None, ortho_bparams=None) Find the k largest (or smallest) eigenvalues and the corresponding eigenvectors of a symmetric positive definite generalized eigenvalue problem using matrix-free LOBPCG methods. This function is a front-end to the following LOBPCG algorithms selectable via method argument: *method="basic"* - the LOBPCG method introduced by Andrew Knyazev, see [Knyazev2001]. A less robust method, may fail when Cholesky is applied to singular input. *method="ortho"* - the LOBPCG method with orthogonal basis selection [StathopoulosEtal2002]. A robust method. Supported inputs are dense, sparse, and batches of dense matrices. Note: In general, the basic method spends least time per iteration. However, the robust methods converge much faster and are more
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
stable. So, the usage of the basic method is generally not recommended but there exist cases where the usage of the basic method may be preferred. Warning: The backward method does not support sparse and complex inputs. It works only when *B* is not provided (i.e. *B == None*). We are actively working on extensions, and the details of the algorithms are going to be published promptly. Warning: While it is assumed that *A* is symmetric, *A.grad* is not. To make sure that *A.grad* is symmetric, so that *A - t * A.grad* is symmetric in first-order optimization routines, prior to running *lobpcg* we do the following symmetrization map: *A -> (A + A.t()) / 2*. The map is performed only when the *A* requires gradients. Parameters: * A (Tensor) -- the input tensor of size (*, m, m) * **B** (*Tensor**, **optional*) -- the input tensor of size (*, m, m). When not specified, *B* is interpreted as identity
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
matrix. * **X** (*tensor**, **optional*) -- the input tensor of size (*, m, n) where *k <= n <= m*. When specified, it is used as initial approximation of eigenvectors. X must be a dense tensor. * **iK** (*tensor**, **optional*) -- the input tensor of size (*, m, m). When specified, it will be used as preconditioner. * **k** (*integer**, **optional*) -- the number of requested eigenpairs. Default is the number of X columns (when specified) or *1*. * **n** (*integer**, **optional*) -- if X is not specified then *n* specifies the size of the generated random approximation of eigenvectors. Default value for *n* is *k*. If X is specified, the value of *n* (when specified) must be the number of X columns. * **tol** (*float**, **optional*) -- residual tolerance for stopping criterion. Default is *feps ** 0.5* where *feps* is
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
smallest non-zero floating-point number of the given input tensor A data type. * **largest** (*bool**, **optional*) -- when True, solve the eigenproblem for the largest eigenvalues. Otherwise, solve the eigenproblem for smallest eigenvalues. Default is *True*. * **method** (*str**, **optional*) -- select LOBPCG method. See the description of the function above. Default is "ortho". * **niter** (*int**, **optional*) -- maximum number of iterations. When reached, the iteration process is hard- stopped and the current approximation of eigenpairs is returned. For infinite iteration but until convergence criteria is met, use *-1*. * **tracker** (*callable**, **optional*) -- a function for tracing the iteration process. When specified, it is called at each iteration step with LOBPCG instance as an argument. The LOBPCG instance holds the full state of the
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
iteration process in the following attributes: *iparams*, *fparams*, *bparams* - dictionaries of integer, float, and boolean valued input parameters, respectively *ivars*, *fvars*, *bvars*, *tvars* - dictionaries of integer, float, boolean, and Tensor valued iteration variables, respectively. *A*, *B*, *iK* - input Tensor arguments. *E*, *X*, *S*, *R* - iteration Tensor variables. For instance: *ivars["istep"]* - the current iteration step *X* - the current approximation of eigenvectors *E* - the current approximation of eigenvalues *R* - the current residual *ivars["converged_count"]* - the current number of converged eigenpairs *tvars["rerr"]* - the current state of convergence criteria Note that when *tracker* stores Tensor objects from the LOBPCG instance, it must make copies of these.
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
instance, it must make copies of these. If *tracker* sets *bvars["force_stop"] = True*, the iteration process will be hard-stopped. * **ortho_iparams** (*dict**, **optional*) -- various parameters to LOBPCG algorithm when using *method="ortho"*. * **ortho_fparams** (*dict**, **optional*) -- various parameters to LOBPCG algorithm when using *method="ortho"*. * **ortho_bparams** (*dict**, **optional*) -- various parameters to LOBPCG algorithm when using *method="ortho"*. Returns: tensor of eigenvalues of size (*, k) X (Tensor): tensor of eigenvectors of size (*, m, k) Return type: E (Tensor) -[ References ]- [Knyazev2001] Andrew V. Knyazev. (2001) Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM J. Sci. Comput., 23(2), 517-541. (25 pages) https://epubs.siam.org/doi/abs/10.1137/S1064827500366124
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
[StathopoulosEtal2002] Andreas Stathopoulos and Kesheng Wu. (2002) A Block Orthogonalization Procedure with Constant Synchronization Requirements. SIAM J. Sci. Comput., 23(6), 2165-2182. (18 pages) https://epubs.siam.org/doi/10.1137/S1064827500370883 [DuerschEtal2018] Jed A. Duersch, Meiyue Shao, Chao Yang, Ming Gu. (2018) A Robust and Efficient Implementation of LOBPCG. SIAM J. Sci. Comput., 40(5), C655-C676. (22 pages) https://epubs.siam.org/doi/abs/10.1137/17M1129830
https://pytorch.org/docs/stable/generated/torch.lobpcg.html
pytorch docs
torch.Tensor.movedim Tensor.movedim(source, destination) -> Tensor See "torch.movedim()"
https://pytorch.org/docs/stable/generated/torch.Tensor.movedim.html
pytorch docs
torch.signal.windows.general_hamming torch.signal.windows.general_hamming(M, *, alpha=0.54, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes the general Hamming window. The general Hamming window is defined as follows: w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)} The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * alpha (float, optional) -- the window coefficient. Default: 0.54. * **sym** (*bool**, **optional*) -- If *False*, returns a periodic window suitable for use in spectral analysis. If *True*, returns a symmetric window suitable for use in filter design. Default: *True*.
https://pytorch.org/docs/stable/generated/torch.signal.windows.general_hamming.html
pytorch docs
design. Default: True. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor Examples: >>> # Generates a symmetric Hamming window with the general Hamming window. >>> torch.signal.windows.general_hamming(10, sym=True)
https://pytorch.org/docs/stable/generated/torch.signal.windows.general_hamming.html
pytorch docs
tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800]) >>> # Generates a periodic Hann window with the general Hamming window. >>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False) tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
https://pytorch.org/docs/stable/generated/torch.signal.windows.general_hamming.html
pytorch docs
torch.Tensor.arctanh Tensor.arctanh() -> Tensor See "torch.arctanh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.arctanh.html
pytorch docs
torch.Tensor.less_equal_ Tensor.less_equal_(other) -> Tensor In-place version of "less_equal()".
https://pytorch.org/docs/stable/generated/torch.Tensor.less_equal_.html
pytorch docs
torch.Tensor.lu_solve Tensor.lu_solve(LU_data, LU_pivots) -> Tensor See "torch.lu_solve()"
https://pytorch.org/docs/stable/generated/torch.Tensor.lu_solve.html
pytorch docs
torch.addcdiv torch.addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise division of "tensor1" by "tensor2", multiplies the result by the scalar "value" and adds it to "input". Warning: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes. \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} The shapes of "input", "tensor1", and "tensor2" must be broadcastable. For inputs of type FloatTensor or DoubleTensor, "value" must be
https://pytorch.org/docs/stable/generated/torch.addcdiv.html
pytorch docs
a real number, otherwise an integer. Parameters: * input (Tensor) -- the tensor to be added * **tensor1** (*Tensor*) -- the numerator tensor * **tensor2** (*Tensor*) -- the denominator tensor Keyword Arguments: * value (Number, optional) -- multiplier for \text{tensor1} / \text{tensor2} * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcdiv(t, t1, t2, value=0.1) tensor([[-0.2312, -3.6496, 0.1312], [-1.0428, 3.4292, -0.1030], [-0.5369, -0.9829, 0.0430]])
https://pytorch.org/docs/stable/generated/torch.addcdiv.html
pytorch docs
VerificationOptions class torch.onnx.verification.VerificationOptions(flatten=True, ignore_none=True, check_shape=True, check_dtype=True, backend=OnnxBackend.ONNX_RUNTIME_CPU, rtol=0.001, atol=1e-07, remained_onnx_input_idx=None, acceptable_error_percentage=None) Options for ONNX export verification. Variables: * flatten (bool) -- If True, unpack nested list/tuple/dict inputs into a flattened list of Tensors for ONNX. Set this to False if nested structures are to be preserved for ONNX, which is usually the case with exporting ScriptModules. Default True. * **ignore_none** (*bool*) -- Whether to ignore None type in torch output, which is usually the case with tracing. Set this to False, if torch output should keep None type, which is usually the case with exporting ScriptModules. Default to True. * **check_shape** (*bool*) -- Whether to check the shapes
https://pytorch.org/docs/stable/generated/torch.onnx.verification.VerificationOptions.html
pytorch docs
between PyTorch and ONNX Runtime outputs are exactly the same. Set this to False to allow output shape broadcasting. Default to True. * **check_dtype** (*bool*) -- Whether to check the dtypes between PyTorch and ONNX Runtime outputs are consistent. Default to True. * **backend** (*torch.onnx.verification.OnnxBackend*) -- ONNX backend for verification. Default to OnnxBackend.ONNX_RUNTIME_CPU. * **rtol** (*float*) -- relative tolerance in comparison between ONNX and PyTorch outputs. * **atol** (*float*) -- absolute tolerance in comparison between ONNX and PyTorch outputs. * **remained_onnx_input_idx** (*Optional**[**Sequence**[**int**]**]*) -- If provided, only the specified inputs will be passed to the ONNX model. Supply a list when there are unused inputs in the model. Since unused inputs will be removed in the exported ONNX model, supplying
https://pytorch.org/docs/stable/generated/torch.onnx.verification.VerificationOptions.html
pytorch docs
all inputs will cause an error on unexpected inputs. This parameter tells the verifier which inputs to pass into the ONNX model. * **acceptable_error_percentage** (*Optional**[**float**]*) -- acceptable percentage of element mismatches in comparison. It should be a float of value between 0.0 and 1.0.
https://pytorch.org/docs/stable/generated/torch.onnx.verification.VerificationOptions.html
pytorch docs
torch.foreach_floor torch.foreach_floor(self: List[Tensor]) -> None Apply "torch.floor()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_floor_.html
pytorch docs
torch.Tensor.true_divide Tensor.true_divide(value) -> Tensor See "torch.true_divide()"
https://pytorch.org/docs/stable/generated/torch.Tensor.true_divide.html
pytorch docs
torch.Tensor.isinf Tensor.isinf() -> Tensor See "torch.isinf()"
https://pytorch.org/docs/stable/generated/torch.Tensor.isinf.html
pytorch docs
torch.sqrt torch.sqrt(input, *, out=None) -> Tensor Returns a new tensor with the square-root of the elements of "input". \text{out}_{i} = \sqrt{\text{input}_{i}} Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([-2.0755, 1.0226, 0.0831, 0.4806]) >>> torch.sqrt(a) tensor([ nan, 1.0112, 0.2883, 0.6933])
https://pytorch.org/docs/stable/generated/torch.sqrt.html
pytorch docs
torch.func.stack_module_state torch.func.stack_module_state(models) -> params, buffers Prepares a list of torch.nn.Modules for ensembling with "vmap()". Given a list of "M" "nn.Modules" of the same class, returns two dictionaries that stack all of their parameters and buffers together, indexed by name. The stacked parameters are optimizable (i.e. they are new leaf nodes in the autograd history that are unrelated to the original parameters and can be passed directly to an optimizer). Here's an example of how to ensemble over a very simple model: num_models = 5 batch_size = 64 in_features, out_features = 3, 3 models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)] data = torch.randn(batch_size, 3) def wrapper(params, buffers, data): return torch.func.functional_call(model[0], (params, buffers), data) params, buffers = stack_module_state(models)
https://pytorch.org/docs/stable/generated/torch.func.stack_module_state.html
pytorch docs
params, buffers = stack_module_state(models) output = vmap(wrapper, (0, 0, None))(params, buffers, data) assert output.shape == (num_models, batch_size, out_features) When there's submodules, this follows state dict naming conventions import torch.nn as nn class Foo(nn.Module): def __init__(self, in_features, out_features): super().__init__() hidden = 4 self.l1 = nn.Linear(in_features, hidden) self.l2 = nn.Linear(hidden, out_features) def forward(self, x): return self.l2(self.l1(x)) num_models = 5 in_features, out_features = 3, 3 models = [Foo(in_features, out_features) for i in range(num_models)] params, buffers = stack_module_state(models) print(list(params.keys())) # "l1.weight", "l1.bias", "l2.weight", "l2.bias" Warning: All of the modules being stacked together must be the same
https://pytorch.org/docs/stable/generated/torch.func.stack_module_state.html
pytorch docs
(except for the values of their parameters/buffers). For example, they should be in the same mode (training vs eval). Return type: Tuple[Dict[str, Any], Dict[str, Any]]
https://pytorch.org/docs/stable/generated/torch.func.stack_module_state.html
pytorch docs
swap_module class torch.quantization.swap_module(mod, mapping, custom_module_class_mapping) Swaps the module if it has a quantized counterpart and it has an observer attached. Parameters: * mod -- input module * **mapping** -- a dictionary that maps from nn module to nnq module Returns: The corresponding quantized module of mod
https://pytorch.org/docs/stable/generated/torch.quantization.swap_module.html
pytorch docs
ConvReLU2d class torch.ao.nn.intrinsic.quantized.ConvReLU2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) A ConvReLU2d module is a fused module of Conv2d and ReLU We adopt the same interface as "torch.ao.nn.quantized.Conv2d". Variables: torch.ao.nn.quantized.Conv2d (Same as) --
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.quantized.ConvReLU2d.html
pytorch docs
torch.narrow torch.narrow(input, dim, start, length) -> Tensor Returns a new tensor that is a narrowed version of "input" tensor. The dimension "dim" is input from "start" to "start + length". The returned tensor and "input" tensor share the same underlying storage. Parameters: * input (Tensor) -- the tensor to narrow * **dim** (*int*) -- the dimension along which to narrow * **start** (*int** or **Tensor*) -- index of the element to start the narrowed dimension from. Can be negative, which means indexing from the end of *dim*. If *Tensor*, it must be an 0-dim integral *Tensor* (bools not allowed) * **length** (*int*) -- length of the narrowed dimension, must be weakly positive Example: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> torch.narrow(x, 0, 0, 2) tensor([[ 1, 2, 3], [ 4, 5, 6]]) >>> torch.narrow(x, 1, 1, 2) tensor([[ 2, 3],
https://pytorch.org/docs/stable/generated/torch.narrow.html
pytorch docs
tensor([[ 2, 3], [ 5, 6], [ 8, 9]]) >>> torch.narrow(x, -1, torch.tensor(-1), 1) tensor([[3], [6], [9]])
https://pytorch.org/docs/stable/generated/torch.narrow.html
pytorch docs
float16_static_qconfig torch.quantization.qconfig.float16_static_qconfig alias of QConfig(activation=functools.partial(, dtype=torch.float16){}, weight=functools.partial(, dtype=torch.float16){})
https://pytorch.org/docs/stable/generated/torch.quantization.qconfig.float16_static_qconfig.html
pytorch docs
torch.nn.functional.dropout2d torch.nn.functional.dropout2d(input, p=0.5, training=True, inplace=False) Randomly zero out entire channels (a channel is a 2D feature map, e.g., the j-th channel of the i-th sample in the batched input is a 2D tensor \text{input}[i, j]) of the input tensor). Each channel will be zeroed out independently on every forward call with probability "p" using samples from a Bernoulli distribution. See "Dropout2d" for details. Parameters: * p (float) -- probability of a channel to be zeroed. Default: 0.5 * **training** (*bool*) -- apply dropout if is "True". Default: "True" * **inplace** (*bool*) -- If set to "True", will do this operation in-place. Default: "False" Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.dropout2d.html
pytorch docs
torch.Tensor.cummax Tensor.cummax(dim) See "torch.cummax()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cummax.html
pytorch docs
torch.nn.functional.upsample_bilinear torch.nn.functional.upsample_bilinear(input, size=None, scale_factor=None) Upsamples the input, using bilinear upsampling. Warning: This function is deprecated in favor of "torch.nn.functional.interpolate()". This is equivalent with "nn.functional.interpolate(..., mode='bilinear', align_corners=True)". Expected inputs are spatial (4 dimensional). Use upsample_trilinear fo volumetric (5 dimensional) inputs. Parameters: * input (Tensor) -- input * **size** (*int** or **Tuple**[**int**, **int**]*) -- output spatial size. * **scale_factor** (*int** or **Tuple**[**int**, **int**]*) -- multiplier for spatial size Note: This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information.
https://pytorch.org/docs/stable/generated/torch.nn.functional.upsample_bilinear.html
pytorch docs
torch.reciprocal torch.reciprocal(input, *, out=None) -> Tensor Returns a new tensor with the reciprocal of the elements of "input" \text{out}_{i} = \frac{1}{\text{input}_{i}} Note: Unlike NumPy's reciprocal, torch.reciprocal supports integral inputs. Integral inputs to reciprocal are automatically promoted to the default scalar type. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([-0.4595, -2.1219, -1.4314, 0.7298]) >>> torch.reciprocal(a) tensor([-2.1763, -0.4713, -0.6986, 1.3702])
https://pytorch.org/docs/stable/generated/torch.reciprocal.html
pytorch docs
torch.cuda.reset_max_memory_cached torch.cuda.reset_max_memory_cached(device=None) Resets the starting point in tracking maximum GPU memory managed by the caching allocator for a given device. See "max_memory_cached()" for details. Parameters: device (torch.device or int, optional) -- selected device. Returns statistic for the current device, given by "current_device()", if "device" is "None" (default). Warning: This function now calls "reset_peak_memory_stats()", which resets /all/ peak memory stats. Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.reset_max_memory_cached.html
pytorch docs
torch.Tensor.lgamma Tensor.lgamma() -> Tensor See "torch.lgamma()"
https://pytorch.org/docs/stable/generated/torch.Tensor.lgamma.html
pytorch docs
SparseAdam class torch.optim.SparseAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, maximize=False) Implements lazy version of Adam algorithm suitable for sparse tensors. In this variant, only moments that show up in the gradient get updated, and only those portions of the gradient get applied to the parameters. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 1e-3) * **betas** (*Tuple**[**float**, **float**]**, **optional*) -- coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) * **eps** (*float**, **optional*) -- term added to the denominator to improve numerical stability (default: 1e-8) * **maximize** (*bool**, **optional*) -- maximize the params based on the objective, instead of minimizing (default: False)
https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
pytorch docs
add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered.
https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
pytorch docs
registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict()
https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
pytorch docs
state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict step(closure=None) Performs a single optimization step. Parameters: **closure** (*Callable**, **optional*) -- A closure that reevaluates the model and returns the loss. zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a
https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
pytorch docs
None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
pytorch docs
torch.Tensor.addbmm Tensor.addbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor See "torch.addbmm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.addbmm.html
pytorch docs