text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.is_conj torch.is_conj(input) Returns True if the "input" is a conjugated tensor, i.e. its conjugate bit is set to True. Parameters: input (Tensor) -- the input tensor.
https://pytorch.org/docs/stable/generated/torch.is_conj.html
pytorch docs
torch.log torch.log(input, *, out=None) -> Tensor Returns a new tensor with the natural logarithm of the elements of "input". y_{i} = \log_{e} (x_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.rand(5) * 5 >>> a tensor([4.7767, 4.3234, 1.2156, 0.2411, 4.5739]) >>> torch.log(a) tensor([ 1.5637, 1.4640, 0.1952, -1.4226, 1.5204])
https://pytorch.org/docs/stable/generated/torch.log.html
pytorch docs
torch.nn.functional.alpha_dropout torch.nn.functional.alpha_dropout(input, p=0.5, training=False, inplace=False) Applies alpha dropout to the input. See "AlphaDropout" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.alpha_dropout.html
pytorch docs
torch.count_nonzero torch.count_nonzero(input, dim=None) -> Tensor Counts the number of non-zero values in the tensor "input" along the given "dim". If no dim is specified then all non-zeros in the tensor are counted. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints**, **optional*) -- Dim or tuple of dims along which to count non-zeros. Example: >>> x = torch.zeros(3,3) >>> x[torch.randn(3,3) > 0.5] = 1 >>> x tensor([[0., 1., 1.], [0., 0., 0.], [0., 0., 1.]]) >>> torch.count_nonzero(x) tensor(3) >>> torch.count_nonzero(x, dim=0) tensor([0, 1, 2])
https://pytorch.org/docs/stable/generated/torch.count_nonzero.html
pytorch docs
NAdam class torch.optim.NAdam(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, momentum_decay=0.004, *, foreach=None, differentiable=False) Implements NAdam algorithm. \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
&\hspace{5mm}if \: \lambda \neq 0 \ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \ &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \ &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \ &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\[-1.ex] & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \ &\rule{110mm}{0.4pt}
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
&\rule{110mm}{0.4pt} \[-1.ex] &\bf{return} \: \theta_t \[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] \end{aligned} For further details regarding the algorithm we refer to Incorporating Nesterov Momentum into Adam. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 2e-3) * **betas** (*Tuple**[**float**, **float**]**, **optional*) -- coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) * **eps** (*float**, **optional*) -- term added to the denominator to improve numerical stability (default: 1e-8) * **weight_decay** (*float**, **optional*) -- weight decay (L2 penalty) (default: 0) * **momentum_decay** (*float**, **optional*) -- momentum momentum_decay (default: 4e-3)
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
momentum_decay (default: 4e-3) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None) * **differentiable** (*bool**, **optional*) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters:
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook)
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes.
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html
pytorch docs
torch.Tensor.bitwise_or Tensor.bitwise_or() -> Tensor See "torch.bitwise_or()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bitwise_or.html
pytorch docs
torch.Tensor.floor_divide Tensor.floor_divide(value) -> Tensor See "torch.floor_divide()"
https://pytorch.org/docs/stable/generated/torch.Tensor.floor_divide.html
pytorch docs
torch.Tensor.all Tensor.all(dim=None, keepdim=False) -> Tensor See "torch.all()"
https://pytorch.org/docs/stable/generated/torch.Tensor.all.html
pytorch docs
torch.rad2deg torch.rad2deg(input, *, out=None) -> Tensor Returns a new tensor with each of the elements of "input" converted from angles in radians to degrees. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]]) >>> torch.rad2deg(a) tensor([[ 180.0233, -180.0233], [ 359.9894, -359.9894], [ 89.9544, -89.9544]])
https://pytorch.org/docs/stable/generated/torch.rad2deg.html
pytorch docs
LSTM class torch.ao.nn.quantized.dynamic.LSTM(args, *kwargs) A dynamic quantized LSTM module with floating point tensor as inputs and outputs. We adopt the same interface as torch.nn.LSTM, please see https://pytorch.org/docs/stable/nn.html#torch.nn.LSTM for documentation. Examples: >>> rnn = nn.LSTM(10, 20, 2) >>> input = torch.randn(5, 3, 10) >>> h0 = torch.randn(2, 3, 20) >>> c0 = torch.randn(2, 3, 20) >>> output, (hn, cn) = rnn(input, (h0, c0))
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.dynamic.LSTM.html
pytorch docs
torch.can_cast torch.can_cast(from, to) -> bool Determines if a type conversion is allowed under PyTorch casting rules described in the type promotion documentation. Parameters: * from (dtype) -- The original "torch.dtype". * **to** (*dtype*) -- The target "torch.dtype". Example: >>> torch.can_cast(torch.double, torch.float) True >>> torch.can_cast(torch.float, torch.int) False
https://pytorch.org/docs/stable/generated/torch.can_cast.html
pytorch docs
torch.autograd.function.FunctionCtx.set_materialize_grads FunctionCtx.set_materialize_grads(value) Sets whether to materialize grad tensors. Default is "True". This should be called only from inside the "forward()" method If "True", undefined grad tensors will be expanded to tensors full of zeros prior to calling the "backward()" and "jvp()" methods. Example:: >>> class SimpleFunc(Function): >>> @staticmethod >>> def forward(ctx, x): >>> return x.clone(), x.clone() >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, g1, g2): >>> return g1 + g2 # No check for None necessary >>> >>> # We modify SimpleFunc to handle non-materialized grad outputs >>> class Func(Function): >>> @staticmethod >>> def forward(ctx, x): >>> ctx.set_materialize_grads(False)
https://pytorch.org/docs/stable/generated/torch.autograd.function.FunctionCtx.set_materialize_grads.html
pytorch docs
ctx.set_materialize_grads(False) >>> ctx.save_for_backward(x) >>> return x.clone(), x.clone() >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, g1, g2): >>> x, = ctx.saved_tensors >>> grad_input = torch.zeros_like(x) >>> if g1 is not None: # We must check for None now >>> grad_input += g1 >>> if g2 is not None: >>> grad_input += g2 >>> return grad_input >>> >>> a = torch.tensor(1., requires_grad=True) >>> b, _ = Func.apply(a) # induces g2 to be undefined
https://pytorch.org/docs/stable/generated/torch.autograd.function.FunctionCtx.set_materialize_grads.html
pytorch docs
torch.Tensor.unique_consecutive Tensor.unique_consecutive(return_inverse=False, return_counts=False, dim=None) Eliminates all but the first element from every consecutive group of equivalent elements. See "torch.unique_consecutive()"
https://pytorch.org/docs/stable/generated/torch.Tensor.unique_consecutive.html
pytorch docs
torch.foreach_neg torch.foreach_neg(self: List[Tensor]) -> None Apply "torch.neg()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_neg_.html
pytorch docs
torch.bmm torch.bmm(input, mat2, *, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in "input" and "mat2". "input" and "mat2" must be 3-D tensors each containing the same number of matrices. If "input" is a (b \times n \times m) tensor, "mat2" is a (b \times m \times p) tensor, "out" will be a (b \times n \times p) tensor. \text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i This operator supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Note: This function does not broadcast. For broadcasting matrix products, see "torch.matmul()". Parameters: * input (Tensor) -- the first batch of matrices to be multiplied * **mat2** (*Tensor*) -- the second batch of matrices to be multiplied Keyword Arguments: out (Tensor, optional) -- the output tensor. Example:
https://pytorch.org/docs/stable/generated/torch.bmm.html
pytorch docs
Example: >>> input = torch.randn(10, 3, 4) >>> mat2 = torch.randn(10, 4, 5) >>> res = torch.bmm(input, mat2) >>> res.size() torch.Size([10, 3, 5])
https://pytorch.org/docs/stable/generated/torch.bmm.html
pytorch docs
torch.cuda.memory_stats torch.cuda.memory_stats(device=None) Returns a dictionary of CUDA memory allocator statistics for a given device. The return value of this function is a dictionary of statistics, each of which is a non-negative integer. Core statistics: ""allocated.{all,large_pool,small_pool}.{current,peak,allocated, freed}"": number of allocation requests received by the memory allocator. ""allocated_bytes.{all,large_pool,small_pool}.{current,peak,allo cated,freed}"": amount of allocated memory. ""segment.{all,large_pool,small_pool}.{current,peak,allocated,fr eed}"": number of reserved segments from "cudaMalloc()". ""reserved_bytes.{all,large_pool,small_pool}.{current,peak,alloc ated,freed}"": amount of reserved memory. ""active.{all,large_pool,small_pool}.{current,peak,allocated,fre ed}"": number of active memory blocks. ""active_bytes.{all,large_pool,small_pool}.{current,peak,allocat
https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html
pytorch docs
ed,freed}"": amount of active memory. ""inactive_split.{all,large_pool,small_pool}.{current,peak,alloc ated,freed}"": number of inactive, non-releasable memory blocks. ""inactive_split_bytes.{all,large_pool,small_pool}.{current,peak ,allocated,freed}"": amount of inactive, non-releasable memory. For these core statistics, values are broken down as follows. Pool type: "all": combined statistics across all memory pools. "large_pool": statistics for the large allocation pool (as of October 2019, for size >= 1MB allocations). "small_pool": statistics for the small allocation pool (as of October 2019, for size < 1MB allocations). Metric type: "current": current value of this metric. "peak": maximum value of this metric. "allocated": historical total increase in this metric. "freed": historical total decrease in this metric. In addition to the core statistics, we also provide some simple event counters:
https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html
pytorch docs
event counters: ""num_alloc_retries"": number of failed "cudaMalloc" calls that result in a cache flush and retry. ""num_ooms"": number of out-of-memory errors thrown. The caching allocator can be configured via ENV to not split blocks larger than a defined size (see Memory Management section of the Cuda Semantics documentation). This helps avoid memory fragmentation but may have a performance penalty. Additional outputs to assist with tuning and evaluating impact: ""max_split_size"": blocks above this size will not be split. ""oversize_allocations.{current,peak,allocated,freed}"": number of over-size allocation requests received by the memory allocator. ""oversize_segments.{current,peak,allocated,freed}"": number of over-size reserved segments from "cudaMalloc()". Parameters: device (torch.device or int, optional) -- selected device. Returns statistics for the current device, given by
https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html
pytorch docs
"current_device()", if "device" is "None" (default). Return type: Dict[str, Any] Note: See Memory management for more details about GPU memory management. Note: With backend:cudaMallocAsync, some stats are not meaningful, and are always reported as zero.
https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html
pytorch docs
BatchNorm2d class torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None) Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated per-dimension over the mini-batches and \gamma and \beta are learnable parameter vectors of size C (where C is the input size). By default, the elements of \gamma are set to 1 and the elements of \beta are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False). Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
pytorch docs
normalization during evaluation. The running estimates are kept with a default "momentum" of 0.1. If "track_running_stats" is set to "False", this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well. Note: This "momentum" argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t, where \hat{x} is the estimated statistic and x_t is the new observed value. Because the Batch Normalization is done over the C dimension, computing statistics on (N, H, W) slices, it's common terminology to call this Spatial Batch Normalization. Parameters: * num_features (int) -- C from an expected input of size (N, C, H, W) * **eps** (*float*) -- a value added to the denominator for
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
pytorch docs
numerical stability. Default: 1e-5 * **momentum** (*float*) -- the value used for the running_mean and running_var computation. Can be set to "None" for cumulative moving average (i.e. simple average). Default: 0.1 * **affine** (*bool*) -- a boolean value that when set to "True", this module has learnable affine parameters. Default: "True" * **track_running_stats** (*bool*) -- a boolean value that when set to "True", this module tracks the running mean and variance, and when set to "False", this module does not track such statistics, and initializes statistics buffers "running_mean" and "running_var" as "None". When these buffers are "None", this module always uses batch statistics. in both training and eval modes. Default: "True" Shape: * Input: (N, C, H, W) * Output: (N, C, H, W) (same shape as input) Examples: >>> # With Learnable Parameters
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
pytorch docs
With Learnable Parameters >>> m = nn.BatchNorm2d(100) >>> # Without Learnable Parameters >>> m = nn.BatchNorm2d(100, affine=False) >>> input = torch.randn(20, 100, 35, 45) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
pytorch docs
torch.triangular_solve torch.triangular_solve(b, A, upper=True, transpose=False, unitriangular=False, *, out=None) Solves a system of equations with a square upper or lower triangular invertible matrix A and multiple right-hand sides b. In symbols, it solves AX = b and assumes A is square upper- triangular (or lower-triangular if "upper"= False) and does not have zeros on the diagonal. torch.triangular_solve(b, A) can take in 2D inputs b, A or inputs that are batches of 2D matrices. If the inputs are batches, then returns batched outputs X If the diagonal of "A" contains zeros or elements that are very close to zero and "unitriangular"= False (default) or if the input matrix is badly conditioned, the result may contain NaN s. Supports input of float, double, cfloat and cdouble data types. Warning: "torch.triangular_solve()" is deprecated in favor of "torch.linalg.solve_triangular()" and will be removed in a future
https://pytorch.org/docs/stable/generated/torch.triangular_solve.html
pytorch docs
PyTorch release. "torch.linalg.solve_triangular()" has its arguments reversed and does not return a copy of one of the inputs."X = torch.triangular_solve(B, A).solution" should be replaced with X = torch.linalg.solve_triangular(A, B) Parameters: * b (Tensor) -- multiple right-hand sides of size (*, m, k) where * is zero of more batch dimensions * **A** (*Tensor*) -- the input triangular coefficient matrix of size (*, m, m) where * is zero or more batch dimensions * **upper** (*bool**, **optional*) -- whether A is upper or lower triangular. Default: "True". * **transpose** (*bool**, **optional*) -- solves *op(A)X = b* where *op(A) = A^T* if this flag is "True", and *op(A) = A* if it is "False". Default: "False". * **unitriangular** (*bool**, **optional*) -- whether A is unit triangular. If True, the diagonal elements of A are assumed to
https://pytorch.org/docs/stable/generated/torch.triangular_solve.html
pytorch docs
be 1 and not referenced from A. Default: "False". Keyword Arguments: out ((Tensor, Tensor), optional) -- tuple of two tensors to write the output to. Ignored if None. Default: None. Returns: A namedtuple (solution, cloned_coefficient) where cloned_coefficient is a clone of A and solution is the solution X to AX = b (or whatever variant of the system of equations, depending on the keyword arguments.) Examples: >>> A = torch.randn(2, 2).triu() >>> A tensor([[ 1.1527, -1.0753], [ 0.0000, 0.7986]]) >>> b = torch.randn(2, 3) >>> b tensor([[-0.0210, 2.3513, -1.5492], [ 1.5429, 0.7403, -1.0243]]) >>> torch.triangular_solve(b, A) torch.return_types.triangular_solve( solution=tensor([[ 1.7841, 2.9046, -2.5405], [ 1.9320, 0.9270, -1.2826]]), cloned_coefficient=tensor([[ 1.1527, -1.0753], [ 0.0000, 0.7986]]))
https://pytorch.org/docs/stable/generated/torch.triangular_solve.html
pytorch docs
torch.frombuffer torch.frombuffer(buffer, *, dtype, count=- 1, offset=0, requires_grad=False) -> Tensor Creates a 1-dimensional "Tensor" from an object that implements the Python buffer protocol. Skips the first "offset" bytes in the buffer, and interprets the rest of the raw bytes as a 1-dimensional tensor of type "dtype" with "count" elements. Note that either of the following must be true: "count" is a positive non-zero number, and the total number of bytes in the buffer is less than "offset" plus "count" times the size (in bytes) of "dtype". "count" is negative, and the length (number of bytes) of the buffer subtracted by the "offset" is a multiple of the size (in bytes) of "dtype". The returned tensor and buffer share the same memory. Modifications to the tensor will be reflected in the buffer and vice versa. The returned tensor is not resizable. Note: This function increments the reference count for the object that
https://pytorch.org/docs/stable/generated/torch.frombuffer.html
pytorch docs
owns the shared memory. Therefore, such memory will not be deallocated before the returned tensor goes out of scope. Warning: This function's behavior is undefined when passed an object implementing the buffer protocol whose data is not on the CPU. Doing so is likely to cause a segmentation fault. Warning: This function does not try to infer the "dtype" (hence, it is not optional). Passing a different "dtype" than its source may result in unexpected behavior. Parameters: buffer (object) -- a Python object that exposes the buffer interface. Keyword Arguments: * dtype ("torch.dtype") -- the desired data type of returned tensor. * **count** (*int**, **optional*) -- the number of desired elements to be read. If negative, all the elements (until the end of the buffer) will be read. Default: -1. * **offset** (*int**, **optional*) -- the number of bytes to
https://pytorch.org/docs/stable/generated/torch.frombuffer.html
pytorch docs
skip at the start of the buffer. Default: 0. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Example: >>> import array >>> a = array.array('i', [1, 2, 3]) >>> t = torch.frombuffer(a, dtype=torch.int32) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3]) >>> # Interprets the signed char bytes as 32-bit integers. >>> # Each 4 signed char elements will be interpreted as >>> # 1 signed 32-bit integer. >>> import array >>> a = array.array('b', [-1, 0, 0, 0]) >>> torch.frombuffer(a, dtype=torch.int32) tensor([255], dtype=torch.int32)
https://pytorch.org/docs/stable/generated/torch.frombuffer.html
pytorch docs
StandaloneModuleConfigEntry class torch.ao.quantization.fx.custom_config.StandaloneModuleConfigEntry(qconfig_mapping: 'Optional[QConfigMapping]', example_inputs: 'Tuple[Any, ...]', prepare_custom_config: 'Optional[PrepareCustomConfig]', backend_config: 'Optional[BackendConfig]')
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.StandaloneModuleConfigEntry.html
pytorch docs
torch.foreach_erf torch.foreach_erf(self: List[Tensor]) -> None Apply "torch.erf()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_erf_.html
pytorch docs
torch.Tensor.det Tensor.det() -> Tensor See "torch.det()"
https://pytorch.org/docs/stable/generated/torch.Tensor.det.html
pytorch docs
torch.autograd.Function.forward static Function.forward(ctx, args, *kwargs) This function is to be overridden by all subclasses. There are two ways to define forward: Usage 1 (Combined forward and ctx): @staticmethod def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any: pass It must accept a context ctx as the first argument, followed by any number of arguments (tensors or other types). See Combined or separate forward() and setup_context() for more details Usage 2 (Separate forward and ctx): @staticmethod def forward(*args: Any, **kwargs: Any) -> Any: pass @staticmethod def setup_context(ctx: Any, inputs: Tuple[Any, ...], output: Any) -> None: pass The forward no longer accepts a ctx argument. Instead, you must also override the "torch.autograd.Function.setup_context()" staticmethod to handle
https://pytorch.org/docs/stable/generated/torch.autograd.Function.forward.html
pytorch docs
setting up the "ctx" object. "output" is the output of the forward, "inputs" are a Tuple of inputs to the forward. See Extending torch.autograd for more details The context can be used to store arbitrary data that can be then retrieved during the backward pass. Tensors should not be stored directly on ctx (though this is not currently enforced for backward compatibility). Instead, tensors should be saved either with "ctx.save_for_backward()" if they are intended to be used in "backward" (equivalently, "vjp") or "ctx.save_for_forward()" if they are intended to be used for in "jvp". Return type: Any
https://pytorch.org/docs/stable/generated/torch.autograd.Function.forward.html
pytorch docs
torch.nn.functional.max_unpool3d torch.nn.functional.max_unpool3d(input, indices, kernel_size, stride=None, padding=0, output_size=None) Computes a partial inverse of "MaxPool3d". See "MaxUnpool3d" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.max_unpool3d.html
pytorch docs
torch.Tensor.add_ Tensor.add_(other, *, alpha=1) -> Tensor In-place version of "add()"
https://pytorch.org/docs/stable/generated/torch.Tensor.add_.html
pytorch docs
PrepareCustomConfig class torch.ao.quantization.fx.custom_config.PrepareCustomConfig Custom configuration for "prepare_fx()" and "prepare_qat_fx()". Example usage: prepare_custom_config = PrepareCustomConfig() .set_standalone_module_name("module1", qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) .set_standalone_module_class(MyStandaloneModule, qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) .set_float_to_observed_mapping(FloatCustomModule, ObservedCustomModule) .set_non_traceable_module_names(["module2", "module3"]) .set_non_traceable_module_classes([NonTraceableModule1, NonTraceableModule2]) .set_input_quantized_indexes([0]) .set_output_quantized_indexes([0]) .set_preserved_attributes(["attr1", "attr2"]) classmethod from_dict(prepare_custom_config_dict)
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.PrepareCustomConfig.html
pytorch docs
Create a "PrepareCustomConfig" from a dictionary with the following items: "standalone_module_name": a list of (module_name, qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) tuples "standalone_module_class" a list of (module_class, qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) tuples "float_to_observed_custom_module_class": a nested dictionary mapping from quantization mode to an inner mapping from float module classes to observed module classes, e.g. {"static": {FloatCustomModule: ObservedCustomModule}} "non_traceable_module_name": a list of modules names that are not symbolically traceable "non_traceable_module_class": a list of module classes that are not symbolically traceable "input_quantized_idxs": a list of indexes of graph inputs that should be quantized "output_quantized_idxs": a list of
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.PrepareCustomConfig.html
pytorch docs
indexes of graph outputs that should be quantized "preserved_attributes": a list of attributes that persist even if they are not used in "forward" This function is primarily for backward compatibility and may be removed in the future. Return type: *PrepareCustomConfig* set_float_to_observed_mapping(float_class, observed_class, quant_type=QuantType.STATIC) Set the mapping from a custom float module class to a custom observed module class. The observed module class must have a "from_float" class method that converts the float module class to the observed module class. This is currently only supported for static quantization. Return type: *PrepareCustomConfig* set_input_quantized_indexes(indexes) Set the indexes of the inputs of the graph that should be quantized. Inputs are otherwise assumed to be in fp32 by default instead. Return type: *PrepareCustomConfig*
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.PrepareCustomConfig.html
pytorch docs
Return type: PrepareCustomConfig set_non_traceable_module_classes(module_classes) Set the modules that are not symbolically traceable, identified by class. Return type: *PrepareCustomConfig* set_non_traceable_module_names(module_names) Set the modules that are not symbolically traceable, identified by name. Return type: *PrepareCustomConfig* set_output_quantized_indexes(indexes) Set the indexes of the outputs of the graph that should be quantized. Outputs are otherwise assumed to be in fp32 by default instead. Return type: *PrepareCustomConfig* set_preserved_attributes(attributes) Set the names of the attributes that will persist in the graph module even if they are not used in the model's "forward" method. Return type: *PrepareCustomConfig*
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.PrepareCustomConfig.html
pytorch docs
Return type: PrepareCustomConfig set_standalone_module_class(module_class, qconfig_mapping, example_inputs, prepare_custom_config, backend_config) Set the configuration for running a standalone module identified by "module_class". If "qconfig_mapping" is None, the parent "qconfig_mapping" will be used instead. If "prepare_custom_config" is None, an empty "PrepareCustomConfig" will be used. If "backend_config" is None, the parent "backend_config" will be used instead. Return type: *PrepareCustomConfig* set_standalone_module_name(module_name, qconfig_mapping, example_inputs, prepare_custom_config, backend_config) Set the configuration for running a standalone module identified by "module_name". If "qconfig_mapping" is None, the parent "qconfig_mapping" will be used instead. If "prepare_custom_config" is None, an empty "PrepareCustomConfig" will be used. If "backend_config" is None,
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.PrepareCustomConfig.html
pytorch docs
the parent "backend_config" will be used instead. Return type: *PrepareCustomConfig* to_dict() Convert this "PrepareCustomConfig" to a dictionary with the items described in "from_dict()". Return type: *Dict*[str, *Any*]
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.PrepareCustomConfig.html
pytorch docs
torch.renorm torch.renorm(input, p, dim, maxnorm, *, out=None) -> Tensor Returns a tensor where each sub-tensor of "input" along dimension "dim" is normalized such that the p-norm of the sub-tensor is lower than the value "maxnorm" Note: If the norm of a row is lower than *maxnorm*, the row is unchanged Parameters: * input (Tensor) -- the input tensor. * **p** (*float*) -- the power for the norm computation * **dim** (*int*) -- the dimension to slice over to get the sub- tensors * **maxnorm** (*float*) -- the maximum norm to keep each sub- tensor under Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> x = torch.ones(3, 3) >>> x[1].fill_(2) tensor([ 2., 2., 2.]) >>> x[2].fill_(3) tensor([ 3., 3., 3.]) >>> x tensor([[ 1., 1., 1.], [ 2., 2., 2.], [ 3., 3., 3.]])
https://pytorch.org/docs/stable/generated/torch.renorm.html
pytorch docs
[ 3., 3., 3.]]) >>> torch.renorm(x, 1, 0, 5) tensor([[ 1.0000, 1.0000, 1.0000], [ 1.6667, 1.6667, 1.6667], [ 1.6667, 1.6667, 1.6667]])
https://pytorch.org/docs/stable/generated/torch.renorm.html
pytorch docs
torch._foreach_cos torch._foreach_cos(self: List[Tensor]) -> List[Tensor] Apply "torch.cos()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_cos.html
pytorch docs
torch.Tensor.numel Tensor.numel() -> int See "torch.numel()"
https://pytorch.org/docs/stable/generated/torch.Tensor.numel.html
pytorch docs
CosineSimilarity class torch.nn.CosineSimilarity(dim=1, eps=1e-08) Returns cosine similarity between x_1 and x_2, computed along dim. \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}. Parameters: * dim (int, optional) -- Dimension where cosine similarity is computed. Default: 1 * **eps** (*float**, **optional*) -- Small value to avoid division by zero. Default: 1e-8 Shape: * Input1: (\ast_1, D, \ast_2) where D is at position dim * Input2: (\ast_1, D, \ast_2), same number of dimensions as x1, matching x1 size at dimension *dim*, and broadcastable with x1 at other dimensions. * Output: (\ast_1, \ast_2) Examples:: >>> input1 = torch.randn(100, 128) >>> input2 = torch.randn(100, 128) >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6) >>> output = cos(input1, input2)
https://pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html
pytorch docs
torch.Tensor.cosh_ Tensor.cosh_() -> Tensor In-place version of "cosh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cosh_.html
pytorch docs
torch.tensor torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) -> Tensor Constructs a tensor with no autograd history (also known as a "leaf tensor", see Autograd mechanics) by copying "data". Warning: When working with tensors prefer using "torch.Tensor.clone()", "torch.Tensor.detach()", and "torch.Tensor.requires_grad_()" for readability. Letting *t* be a tensor, "torch.tensor(t)" is equivalent to "t.clone().detach()", and "torch.tensor(t, requires_grad=True)" is equivalent to "t.clone().detach().requires_grad_(True)". See also: "torch.as_tensor()" preserves autograd history and avoids copies where possible. "torch.from_numpy()" creates a tensor that shares storage with a NumPy array. Parameters: data (array_like) -- Initial data for the tensor. Can be a list, tuple, NumPy "ndarray", scalar, and other types. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.tensor.html
pytorch docs
Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", infers data type from "data". * **device** ("torch.device", optional) -- the device of the constructed tensor. If None and data is a tensor then the device of data is used. If None and data is not a tensor then the result tensor is constructed on the CPU. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]) tensor([[ 0.1000, 1.2000], [ 2.2000, 3.1000], [ 4.9000, 5.2000]]) >>> torch.tensor([0, 1]) # Type inference on data tensor([ 0, 1])
https://pytorch.org/docs/stable/generated/torch.tensor.html
pytorch docs
tensor([ 0, 1]) >>> torch.tensor([[0.11111, 0.222222, 0.3333333]], ... dtype=torch.float64, ... device=torch.device('cuda:0')) # creates a double tensor on a CUDA device tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') >>> torch.tensor(3.14159) # Create a zero-dimensional (scalar) tensor tensor(3.1416) >>> torch.tensor([]) # Create an empty tensor (of size (0,)) tensor([])
https://pytorch.org/docs/stable/generated/torch.tensor.html
pytorch docs
Fold class torch.nn.Fold(output_size, kernel_size, dilation=1, padding=0, stride=1) Combines an array of sliding local blocks into a large containing tensor. Consider a batched "input" tensor containing sliding local blocks, e.g., patches of images, of shape (N, C \times \prod(\text{kernel_size}), L), where N is batch dimension, C \times \prod(\text{kernel_size}) is the number of values within a block (a block has \prod(\text{kernel_size}) spatial locations each containing a C-channeled vector), and L is the total number of blocks. (This is exactly the same specification as the output shape of "Unfold".) This operation combines these local blocks into the large "output" tensor of shape (N, C, \text{output_size}[0], \text{output_size}[1], \dots) by summing the overlapping values. Similar to "Unfold", the arguments must satisfy L = \prod_d \left\lfloor\frac{\text{output\_size}[d] + 2 \times \text{padding}[d] % - \text{dilation}[d] \times
https://pytorch.org/docs/stable/generated/torch.nn.Fold.html
pytorch docs
(\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor, where d is over all spatial dimensions. "output_size" describes the spatial shape of the large containing tensor of the sliding local blocks. It is useful to resolve the ambiguity when multiple input shapes map to same number of sliding blocks, e.g., with "stride > 0". The "padding", "stride" and "dilation" arguments specify how the sliding blocks are retrieved. "stride" controls the stride for the sliding blocks. "padding" controls the amount of implicit zero-paddings on both sides for "padding" number of points for each dimension before reshaping. "dilation" controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what "dilation" does. Parameters: * output_size (int or tuple) -- the shape of the
https://pytorch.org/docs/stable/generated/torch.nn.Fold.html
pytorch docs
spatial dimensions of the output (i.e., "output.sizes()[2:]") * **kernel_size** (*int** or **tuple*) -- the size of the sliding blocks * **dilation** (*int** or **tuple**, **optional*) -- a parameter that controls the stride of elements within the neighborhood. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- implicit zero padding to be added on both sides of input. Default: 0 * **stride** (*int** or **tuple*) -- the stride of the sliding blocks in the input spatial dimensions. Default: 1 If "output_size", "kernel_size", "dilation", "padding" or "stride" is an int or a tuple of length 1 then their values will be replicated across all spatial dimensions. For the case of two output spatial dimensions this operation is sometimes called "col2im". Note: "Fold" calculates each combined value in the resulting large tensor by summing all values from all containing blocks. "Unfold"
https://pytorch.org/docs/stable/generated/torch.nn.Fold.html
pytorch docs
extracts the values in the local blocks by copying from the large tensor. So, if the blocks overlap, they are not inverses of each other.In general, folding and unfolding operations are related as follows. Consider "Fold" and "Unfold" instances created with the same parameters: >>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...) >>> fold = nn.Fold(output_size=..., **fold_params) >>> unfold = nn.Unfold(**fold_params) Then for any (supported) "input" tensor the following equality holds: fold(unfold(input)) == divisor * input where "divisor" is a tensor that depends only on the shape and dtype of the "input": >>> input_ones = torch.ones(input.shape, dtype=input.dtype) >>> divisor = fold(unfold(input_ones)) When the "divisor" tensor contains no zero elements, then "fold" and "unfold" operations are inverses of each other (up to constant divisor). Warning:
https://pytorch.org/docs/stable/generated/torch.nn.Fold.html
pytorch docs
constant divisor). Warning: Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported. Shape: * Input: (N, C \times \prod(\text{kernel_size}), L) or (C \times \prod(\text{kernel_size}), L) * Output: (N, C, \text{output\_size}[0], \text{output\_size}[1], \dots) or (C, \text{output\_size}[0], \text{output\_size}[1], \dots) as described above Examples: >>> fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2)) >>> input = torch.randn(1, 3 * 2 * 2, 12) >>> output = fold(input) >>> output.size() torch.Size([1, 3, 4, 5])
https://pytorch.org/docs/stable/generated/torch.nn.Fold.html
pytorch docs
torch.nanmedian torch.nanmedian(input) -> Tensor Returns the median of the values in "input", ignoring "NaN" values. This function is identical to "torch.median()" when there are no "NaN" values in "input". When "input" has one or more "NaN" values, "torch.median()" will always return "NaN", while this function will return the median of the non-"NaN" elements in "input". If all the elements in "input" are "NaN" it will also return "NaN". Parameters: input (Tensor) -- the input tensor. Example: >>> a = torch.tensor([1, float('nan'), 3, 2]) >>> a.median() tensor(nan) >>> a.nanmedian() tensor(2.) torch.nanmedian(input, dim=- 1, keepdim=False, *, out=None) Returns a namedtuple "(values, indices)" where "values" contains the median of each row of "input" in the dimension "dim", ignoring "NaN" values, and "indices" contains the index of the median values found in the dimension "dim".
https://pytorch.org/docs/stable/generated/torch.nanmedian.html
pytorch docs
found in the dimension "dim". This function is identical to "torch.median()" when there are no "NaN" values in a reduced row. When a reduced row has one or more "NaN" values, "torch.median()" will always reduce it to "NaN", while this function will reduce it to the median of the non-"NaN" elements. If all the elements in a reduced row are "NaN" then it will be reduced to "NaN", too. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: out ((Tensor, Tensor), optional) -- The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension "dim" of "input". Example: >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) >>> a tensor([[2., 3., 1.],
https://pytorch.org/docs/stable/generated/torch.nanmedian.html
pytorch docs
a tensor([[2., 3., 1.], [nan, 1., nan]]) >>> a.median(0) torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) >>> a.nanmedian(0) torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0]))
https://pytorch.org/docs/stable/generated/torch.nanmedian.html
pytorch docs
EmbeddingBag class torch.ao.nn.quantized.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, mode='sum', sparse=False, _weight=None, include_last_offset=False, dtype=torch.quint8) A quantized EmbeddingBag module with quantized packed weights as inputs. We adopt the same interface as torch.nn.EmbeddingBag, please see https://pytorch.org/docs/stable/nn.html#torch.nn.EmbeddingBag for documentation. Similar to "EmbeddingBag", attributes will be randomly initialized at module creation time and will be overwritten later Variables: weight (Tensor) -- the non-learnable quantized weights of the module of shape (\text{num_embeddings}, \text{embedding_dim}). Examples:: >>> m = nn.quantized.EmbeddingBag(num_embeddings=10, embedding_dim=12, include_last_offset=True, mode='sum')
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.EmbeddingBag.html
pytorch docs
indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8, 6, 6, 9, 1, 6, 8, 8, 3, 2, 3, 6, 3, 6, 5, 7, 0, 8, 4, 6, 5, 8, 2, 3]) >>> offsets = torch.tensor([0, 19, 20, 28, 28, 32]) >>> output = m(indices, offsets) >>> print(output.size()) torch.Size([5, 12]) classmethod from_float(mod) Create a quantized embedding_bag module from a float module Parameters: **mod** (*Module*) -- a float module, either produced by torch.ao.quantization utilities or provided by user
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.EmbeddingBag.html
pytorch docs
torch.linalg.slogdet torch.linalg.slogdet(A, *, out=None) Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix. For complex "A", it returns the sign and the natural logarithm of the modulus of the determinant, that is, a logarithmic polar decomposition of the determinant. The determinant can be recovered as sign * exp(logabsdet). When a matrix has a determinant of zero, it returns (0, -inf). Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. See also: "torch.linalg.det()" computes the determinant of square matrices. Parameters: A (Tensor) -- tensor of shape (, n, n)* where *** is zero or more batch dimensions. Keyword Arguments: out (tuple, optional) -- output tuple of two tensors. Ignored if None. Default: None.
https://pytorch.org/docs/stable/generated/torch.linalg.slogdet.html
pytorch docs
Ignored if None. Default: None. Returns: A named tuple (sign, logabsdet). *sign* will have the same dtype as "A". *logabsdet* will always be real-valued, even when "A" is complex. Examples: >>> A = torch.randn(3, 3) >>> A tensor([[ 0.0032, -0.2239, -1.1219], [-0.6690, 0.1161, 0.4053], [-1.6218, -0.9273, -0.0082]]) >>> torch.linalg.det(A) tensor(-0.7576) >>> torch.logdet(A) tensor(nan) >>> torch.linalg.slogdet(A) torch.return_types.linalg_slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))
https://pytorch.org/docs/stable/generated/torch.linalg.slogdet.html
pytorch docs
torch.float_power torch.float_power(input, exponent, *, out=None) -> Tensor Raises "input" to the power of "exponent", elementwise, in double precision. If neither input is complex returns a "torch.float64" tensor, and if one or more inputs is complex returns a "torch.complex128" tensor. Note: This function always computes in double precision, unlike "torch.pow()", which implements more typical type promotion. This is useful when the computation needs to be performed in a wider or more precise dtype, or the results of the computation may contain fractional values not representable in the input dtypes, like when an integer base is raised to a negative integer exponent. Parameters: * input (Tensor or Number) -- the base value(s) * **exponent** (*Tensor** or **Number*) -- the exponent value(s) Keyword Arguments: out (Tensor, optional) -- the output tensor. Example:
https://pytorch.org/docs/stable/generated/torch.float_power.html
pytorch docs
Example: >>> a = torch.randint(10, (4,)) >>> a tensor([6, 4, 7, 1]) >>> torch.float_power(a, 2) tensor([36., 16., 49., 1.], dtype=torch.float64) >>> a = torch.arange(1, 5) >>> a tensor([ 1, 2, 3, 4]) >>> exp = torch.tensor([2, -3, 4, -5]) >>> exp tensor([ 2, -3, 4, -5]) >>> torch.float_power(a, exp) tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64)
https://pytorch.org/docs/stable/generated/torch.float_power.html
pytorch docs
ConvReLU2d class torch.ao.nn.intrinsic.ConvReLU2d(conv, relu) This is a sequential container which calls the Conv2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.ConvReLU2d.html
pytorch docs
torch.istft torch.istft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, normalized=False, onesided=None, length=None, return_complex=False) -> Tensor: Inverse short time Fourier Transform. This is expected to be the inverse of "stft()". It has the same parameters (+ additional optional parameter of "length") and it should return the least squares estimation of the original signal. The algorithm will check using the NOLA condition ( nonzero overlap). Important consideration in the parameters "window" and "center" so that the envelop created by the summation of all the windows is never zero at certain point in time. Specifically, \sum_{t=-\infty}^{\infty} |w|^2[n-t\times hop_length] \cancel{=} 0. Since "stft()" discards elements at the end of the signal if they do not fit in a frame, "istft" may return a shorter signal than the original signal (can occur if "center" is False since the signal
https://pytorch.org/docs/stable/generated/torch.istft.html
pytorch docs
isn't padded). If length is given in the arguments and is longer than expected, "istft" will pad zeros to the end of the returned signal. If "center" is "True", then there will be padding e.g. "'constant'", "'reflect'", etc. Left padding can be trimmed off exactly because they can be calculated but right padding cannot be calculated without additional information. Example: Suppose the last window is: "[17, 18, 0, 0, 0]" vs "[18, 0, 0, 0, 0]" The "n_fft", "hop_length", "win_length" are all the same which prevents the calculation of right padding. These additional values could be zeros or a reflection of the signal so providing "length" could be useful. If "length" is "None" then padding will be aggressively removed (some loss of signal). [1] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. ASSP, vol.32, no.2, pp.236-243, Apr. 1984. Parameters: * input (Tensor) --
https://pytorch.org/docs/stable/generated/torch.istft.html
pytorch docs
Parameters: * input (Tensor) -- The input tensor. Expected to be in the format of "stft()", output. That is a complex tensor of shape ("channel", "fft_size", "n_frame"), where the "channel" dimension is optional. Changed in version 2.0: Real datatype inputs are no longer supported. Input must now have a complex datatype, as returned by "stft(..., return_complex=True)". * **n_fft** (*int*) -- Size of Fourier transform * **hop_length** (*Optional**[**int**]*) -- The distance between neighboring sliding window frames. (Default: "n_fft // 4") * **win_length** (*Optional**[**int**]*) -- The size of window frame and STFT filter. (Default: "n_fft") * **window** (*Optional**[**torch.Tensor**]*) -- The optional window function. (Default: "torch.ones(win_length)") * **center** (*bool*) -- Whether "input" was padded on both sides so that the t-th frame is centered at time t \times
https://pytorch.org/docs/stable/generated/torch.istft.html
pytorch docs
\text{hop_length}. (Default: "True") * **normalized** (*bool*) -- Whether the STFT was normalized. (Default: "False") * **onesided** (*Optional**[**bool**]*) -- Whether the STFT was onesided. (Default: "True" if "n_fft != fft_size" in the input size) * **length** (*Optional**[**int**]*) -- The amount to trim the signal by (i.e. the original signal length). (Default: whole signal) * **return_complex** (*Optional**[**bool**]*) -- Whether the output should be complex, or if the input should be assumed to derive from a real signal and window. Note that this is incompatible with "onesided=True". (Default: "False") Returns: Least squares estimation of the original signal of size (..., signal_length) Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.istft.html
pytorch docs
Softmax class torch.nn.Softmax(dim=None) Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} When the input Tensor is a sparse tensor then the unspecified values are treated as "-inf". Shape: * Input: (*) where *** means, any number of additional dimensions * Output: (*), same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Parameters: dim (int) -- A dimension along which Softmax will be computed (so every slice along dim will sum to 1). Return type: None Note: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
pytorch docs
LogSoftmax instead (it's faster and has better numerical properties). Examples: >>> m = nn.Softmax(dim=1) >>> input = torch.randn(2, 3) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
pytorch docs
torch.empty_like torch.empty_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns an uninitialized tensor with the same size as "input". "torch.empty_like(input)" is equivalent to "torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)". Parameters: input (Tensor) -- the size of "input" will determine size of the output tensor. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned Tensor. Default: if "None", defaults to the dtype of "input". * **layout** ("torch.layout", optional) -- the desired layout of returned tensor. Default: if "None", defaults to the layout of "input". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", defaults to the device of "input".
https://pytorch.org/docs/stable/generated/torch.empty_like.html
pytorch docs
"input". * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **memory_format** ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format". Example: >>> a=torch.empty((2,3), dtype=torch.int32, device = 'cuda') >>> torch.empty_like(a) tensor([[0, 0, 0], [0, 0, 0]], device='cuda:0', dtype=torch.int32)
https://pytorch.org/docs/stable/generated/torch.empty_like.html
pytorch docs
torch.linalg.matrix_exp torch.linalg.matrix_exp(A) -> Tensor Computes the matrix exponential of a square matrix. Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, this function computes the matrix exponential of A \in \mathbb{K}^{n \times n}, which is defined as \mathrm{matrix_exp}(A) = \sum_{k=0}^\infty \frac{1}{k!}A^k \in \mathbb{K}^{n \times n}. If the matrix A has eigenvalues \lambda_i \in \mathbb{C}, the matrix \mathrm{matrix_exp}(A) has eigenvalues e^{\lambda_i} \in \mathbb{C}. Supports input of bfloat16, float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. Parameters: A (Tensor) -- tensor of shape (, n, n)* where *** is zero or more batch dimensions. Example: >>> A = torch.empty(2, 2, 2) >>> A[0, :, :] = torch.eye(2, 2) >>> A[1, :, :] = 2 * torch.eye(2, 2) >>> A
https://pytorch.org/docs/stable/generated/torch.linalg.matrix_exp.html
pytorch docs
A tensor([[[1., 0.], [0., 1.]], [[2., 0.], [0., 2.]]]) >>> torch.linalg.matrix_exp(A) tensor([[[2.7183, 0.0000], [0.0000, 2.7183]], [[7.3891, 0.0000], [0.0000, 7.3891]]]) >>> import math >>> A = torch.tensor([[0, math.pi/3], [-math.pi/3, 0]]) # A is skew-symmetric >>> torch.linalg.matrix_exp(A) # matrix_exp(A) = [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]] tensor([[ 0.5000, 0.8660], [-0.8660, 0.5000]])
https://pytorch.org/docs/stable/generated/torch.linalg.matrix_exp.html
pytorch docs
torch.jit.unused torch.jit.unused(fn) This decorator indicates to the compiler that a function or method should be ignored and replaced with the raising of an exception. This allows you to leave code in your model that is not yet TorchScript compatible and still export your model. Example (using "@torch.jit.unused" on a method): import torch import torch.nn as nn class MyModule(nn.Module): def __init__(self, use_memory_efficient): super(MyModule, self).__init__() self.use_memory_efficient = use_memory_efficient @torch.jit.unused def memory_efficient(self, x): import pdb pdb.set_trace() return x + 10 def forward(self, x): # Use not-yet-scriptable memory efficient mode if self.use_memory_efficient: return self.memory_efficient(x) else:
https://pytorch.org/docs/stable/generated/torch.jit.unused.html
pytorch docs
else: return x + 10 m = torch.jit.script(MyModule(use_memory_efficient=False)) m.save("m.pt") m = torch.jit.script(MyModule(use_memory_efficient=True)) # exception raised m(torch.rand(100))
https://pytorch.org/docs/stable/generated/torch.jit.unused.html
pytorch docs
FXFloatFunctional class torch.ao.nn.quantized.FXFloatFunctional module to replace FloatFunctional module before FX graph mode quantization, since activation_post_process will be inserted in top level module directly Valid operation names: * add * cat * mul * add_relu * add_scalar * mul_scalar
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.FXFloatFunctional.html
pytorch docs
fuse_modules class torch.quantization.fuse_modules(model, modules_to_fuse, inplace=False, fuser_func=, fuse_custom_config_dict=None) Fuses a list of modules into a single module Fuses only the following sequence of modules: conv, bn conv, bn, relu conv, relu linear, relu bn, relu All other sequences are left unchanged. For these sequences, replaces the first item in the list with the fused module, replacing the rest of the modules with identity. Parameters: * model -- Model containing the modules to be fused * **modules_to_fuse** -- list of list of module names to fuse. Can also be a list of strings if there is only a single list of modules to fuse. * **inplace** -- bool specifying if fusion happens in place on the model, by default a new model is returned * **fuser_func** -- Function that takes in a list of modules and outputs a list of fused modules of the same length. For
https://pytorch.org/docs/stable/generated/torch.quantization.fuse_modules.html
pytorch docs
example, fuser_func([convModule, BNModule]) returns the list [ConvBNModule, nn.Identity()] Defaults to torch.ao.quantization.fuse_known_modules * **fuse_custom_config_dict** -- custom configuration for fusion # Example of fuse_custom_config_dict fuse_custom_config_dict = { # Additional fuser_method mapping "additional_fuser_method_mapping": { (torch.nn.Conv2d, torch.nn.BatchNorm2d): fuse_conv_bn }, } Returns: model with fused modules. A new copy is created if inplace=True. Examples: >>> m = M().eval() >>> # m is a module containing the sub-modules below >>> modules_to_fuse = [ ['conv1', 'bn1', 'relu1'], ['submodule.conv', 'submodule.relu']] >>> fused_m = torch.ao.quantization.fuse_modules(m, modules_to_fuse) >>> output = fused_m(input) >>> m = M().eval() >>> # Alternately provide a single list of modules to fuse
https://pytorch.org/docs/stable/generated/torch.quantization.fuse_modules.html
pytorch docs
modules_to_fuse = ['conv1', 'bn1', 'relu1'] >>> fused_m = torch.ao.quantization.fuse_modules(m, modules_to_fuse) >>> output = fused_m(input)
https://pytorch.org/docs/stable/generated/torch.quantization.fuse_modules.html
pytorch docs
torch.round torch.round(input, *, decimals=0, out=None) -> Tensor Rounds elements of "input" to the nearest integer. For integer inputs, follows the array-api convention of returning a copy of the input tensor. Note: This function implements the "round half to even" to break ties when a number is equidistant from two integers (e.g. *round(2.5)* is 2).When the :attr:`decimals` argument is specified the algorithm used is similar to NumPy's *around*. This algorithm is fast but inexact and it can easily overflow for low precision dtypes. Eg. *round(tensor([10000], dtype=torch.float16), decimals=3)* is *inf*. See also: "torch.ceil()", which rounds up. "torch.floor()", which rounds down. "torch.trunc()", which rounds towards zero. Parameters: * input (Tensor) -- the input tensor. * **decimals** (*int*) -- Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number
https://pytorch.org/docs/stable/generated/torch.round.html
pytorch docs
of positions to the left of the decimal point. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7))) tensor([ 5., -2., 9., -8.]) >>> # Values equidistant from two integers are rounded towards the >>> # the nearest even value (zero is treated as even) >>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5])) tensor([-0., 0., 2., 2.]) >>> # A positive decimals argument rounds to the to that decimal place >>> torch.round(torch.tensor([0.1234567]), decimals=3) tensor([0.1230]) >>> # A negative decimals argument rounds to the left of the decimal >>> torch.round(torch.tensor([1200.1234567]), decimals=-3) tensor([1000.])
https://pytorch.org/docs/stable/generated/torch.round.html
pytorch docs
torch.is_tensor torch.is_tensor(obj) Returns True if obj is a PyTorch tensor. Note that this function is simply doing "isinstance(obj, Tensor)". Using that "isinstance" check is better for typechecking with mypy, and more explicit - so it's recommended to use that instead of "is_tensor". Parameters: obj (Object) -- Object to test Example: >>> x = torch.tensor([1, 2, 3]) >>> torch.is_tensor(x) True
https://pytorch.org/docs/stable/generated/torch.is_tensor.html
pytorch docs
torch._foreach_sin torch._foreach_sin(self: List[Tensor]) -> List[Tensor] Apply "torch.sin()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_sin.html
pytorch docs
FractionalMaxPool2d class torch.nn.FractionalMaxPool2d(kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None) Applies a 2D fractional max pooling over an input signal composed of several input planes. Fractional MaxPooling is described in detail in the paper Fractional MaxPooling by Ben Graham The max-pooling operation is applied in kH \times kW regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes. Parameters: * kernel_size (Union[int, Tuple[int, int]]) -- the size of the window to take a max over. Can be a single number k (for a square kernel of k x k) or a tuple (kh, kw) * **output_size** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- the target output size of the image of the form *oH x oW*. Can be a tuple *(oH, oW)* or a single number
https://pytorch.org/docs/stable/generated/torch.nn.FractionalMaxPool2d.html
pytorch docs
oH for a square image oH x oH * **output_ratio** (*Union**[**float**, **Tuple**[**float**, **float**]**]*) -- If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1) * **return_indices** (*bool*) -- if "True", will return the indices along with the outputs. Useful to pass to "nn.MaxUnpool2d()". Default: "False" Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where (H_{out}, W_{out})=\text{output\_size} or (H_{out}, W_{out})=\text{output\_ratio} \times (H_{in}, W_{in}). -[ Examples ]- pool of square window of size=3, and target output size 13x12 m = nn.FractionalMaxPool2d(3, output_size=(13, 12)) pool of square window and target output size being half of input image size
https://pytorch.org/docs/stable/generated/torch.nn.FractionalMaxPool2d.html
pytorch docs
m = nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5)) input = torch.randn(20, 16, 50, 32) output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.FractionalMaxPool2d.html
pytorch docs
torch.repeat_interleave torch.repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor Repeat elements of a tensor. Warning: This is different from "torch.Tensor.repeat()" but similar to "numpy.repeat". Parameters: * input (Tensor) -- the input tensor. * **repeats** (*Tensor** or **int*) -- The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. * **dim** (*int**, **optional*) -- The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array. Keyword Arguments: output_size (int, optional) -- Total output size for the given axis ( e.g. sum of repeats). If given, it will avoid stream synchronization needed to calculate output shape of the tensor. Returns: Repeated tensor which has the same shape as input, except along the given axis.
https://pytorch.org/docs/stable/generated/torch.repeat_interleave.html
pytorch docs
the given axis. Return type: Tensor Example: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat_interleave(2) tensor([1, 1, 2, 2, 3, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.repeat_interleave(y, 2) tensor([1, 1, 2, 2, 3, 3, 4, 4]) >>> torch.repeat_interleave(y, 3, dim=1) tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) tensor([[1, 2], [3, 4], [3, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) tensor([[1, 2], [3, 4], [3, 4]]) torch.repeat_interleave(repeats, *, output_size=None) -> Tensor If the repeats is tensor([n1, n2, n3, ...]), then the output will be tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...]) where 0 appears n1 times, 1 appears n2 times, 2 appears n3 times, etc.
https://pytorch.org/docs/stable/generated/torch.repeat_interleave.html
pytorch docs