Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
00143e2e-2d9f-4fc3-a9c5-9d2e6aba5cba
multivariable_calculus
false
null
Determine the coordinates, if any, for which $f(x,y) = 6 \cdot x^2 - 3 \cdot x^2 \cdot y + y^3 + 12$ has 1. a Relative Minimum(s) 2. a Relative Maximum(s) 3. a Saddle Point(s) If a Relative Minimum or Maximum, find the Minimum or Maximum value. If none, enter None.
1. The function $f(x,y)$ has Relative Minimum(s) at None with the value(s) None 2. The function $f(x,y)$ has Relative Maximum(s) at None with the value(s) None 3. The function $f(x,y)$ has a Saddle Point(s) at $P(-2,2)$, $P(2,2)$
00282b7b-1bf6-415d-9f17-d04e9c9700e2
precalculus_review
true

Estimate the average rate of change from $x=2$ to $x=6$ for the following function $f(x)$ whose graph is given below: Note that the average rate of change of a function from $x=a$ to $x=b$ is $\frac{ f(b)-f(a) }{ b-a }$.
The final answer: $0.5$
0075433c-0afb-41a9-a18a-986d8a81a653
multivariable_calculus
false
null
Evaluate the integral by choosing the order of integration: $$ \int_{0}^1 \int_{1}^2 \left(\frac{ y }{ x+y^2 }\right) \, dy \, dx $$
$\int_{0}^1 \int_{1}^2 \left(\frac{ y }{ x+y^2 }\right) \, dy \, dx$ = $\ln\left(\frac{25\cdot\sqrt{5}}{32}\right)$
00f6affb-905a-4109-a78e-2dde7a0b83ac
integral_calc
false
null
Solve the integral: $$ \int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) } \, dx $$
$\int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) } \, dx$ = $C+\ln\left(\left|\tan(x)\right|\right)-\frac{3}{2\cdot\left(\tan(x)\right)^2}-\frac{3}{4\cdot\left(\tan(x)\right)^4}-\frac{1}{6\cdot\left(\tan(x)\right)^6}$
0118dbbc-db0e-4ab9-a2ed-ddb2edd0eefc
sequences_series
false
null
Find the Fourier series of the periodic function $f(x) = x^2$ in the interval $-2 \cdot \pi \leq x < 2 \cdot \pi$ if $f(x) = f(x + 4 \cdot \pi)$.
The Fourier series is: $\frac{4\cdot\pi^2}{3}+\sum_{n=1}^\infty\left(\frac{16\cdot(-1)^n}{n^2}\cdot\cos\left(\frac{n\cdot x}{2}\right)\right)$
0146d63a-d9e9-4910-9267-10f87812aff4
multivariable_calculus
false
null
If $z = x \cdot y \cdot e^{\frac{ x }{ y }}$, $x = r \cdot \cos\left(\theta\right)$, $y = r \cdot \sin\left(\theta\right)$, find $\frac{ d z }{d r}$ and $\frac{ d z }{d \theta}$ when $r = 2$ and $\theta = \frac{ \pi }{ 6 }$.
The final answer: $\frac{ d z }{d r}$: $\sqrt{3}\cdot e^{\left(\sqrt{3}\right)}$ $\frac{ d z }{d \theta}$: $2\cdot e^{\left(\sqrt{3}\right)}-4\cdot\sqrt{3}\cdot e^{\left(\sqrt{3}\right)}$
014e9af5-759a-4711-aa22-0f9c76acb502
sequences_series
false
null
Consider the function $y = \left| \cos\left( \frac{ x }{ 8 } \right) \right|$. 1. Find the Fourier series of the function. 2. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty \frac{ (-1)^n }{ 4 \cdot n^2 - 1 }$. 3. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty \frac{ 1 }{ 4 \cdot n^2 - 1 }$.
1. The Fourier series is $\frac{2}{\pi}-\frac{4}{\pi}\cdot\sum_{n=1}^\infty\left(\frac{(-1)^n}{\left(4\cdot n^2-1\right)}\cdot\cos\left(\frac{n\cdot x}{4}\right)\right)$ 2. The sum of the series $\sum_{n=1}^\infty \frac{ (-1)^n }{ 4 \cdot n^2 - 1 }$ is $\frac{(2-\pi)}{4}$ 3. The sum of the series $\sum_{n=1}^\infty \frac{ 1 }{ 4 \cdot n^2 - 1 }$ is $\frac{1}{2}$
01683c2c-a5b7-4bff-8e4f-d8fdad3cac45
differential_calc
false
null
For the function $r = \arctan\left(\frac{ m }{ \varphi }\right) + \arccot\left(m \cdot \cot(\varphi)\right)$, find the derivative $r'(0)$ and $r'(2 \cdot \pi)$. Submit as your final answer: 1. $r'(0)$ 2. $r'(2 \cdot \pi)$
1. $0$ 2. $\frac{1}{m}-\frac{m}{m^2+4\cdot\pi^2}$
01961276-06fd-4869-8e58-eb15a4eb4034
algebra
false
null
Rewrite the quadratic expression $x^2 + \frac{ 2 }{ 3 } \cdot x - \frac{ 1 }{ 3 }$ by completing the square.
$x^2 + \frac{ 2 }{ 3 } \cdot x - \frac{ 1 }{ 3 }$ = $\left(x+\frac{1}{3}\right)^2-\frac{4}{9}$
01c011c6-2528-46de-aa90-9a86ace5747a
sequences_series
false
null
Using the Taylor formula, decompose the function $f(x) = \ln(1+4 \cdot x)$ in powers of the variable $x$ on the segment $[0,1]$. Use the first nine terms. Then estimate the accuracy obtained by dropping an additional term after the first nine terms.
1. $\ln(1+4 \cdot x)$ = $4\cdot x-\frac{(4\cdot x)^2}{2}+\frac{(4\cdot x)^3}{3}-\frac{(4\cdot x)^4}{4}+\frac{(4\cdot x)^5}{5}-\frac{(4\cdot x)^6}{6}+\frac{(4\cdot x)^7}{7}-\frac{(4\cdot x)^8}{8}+\frac{(4\cdot x)^9}{9}$ 2. Accuracy is not more than $\frac{4^{10}}{10}$
01e4ed04-1ed3-4cda-af81-35686c0a16d0
differential_calc
false
null
Compute the limit: $$ \lim_{x \to 0}\left(\frac{ x-x \cdot \cos(x) }{ x-\sin(x) }\right) $$
$\lim_{x \to 0}\left(\frac{ x-x \cdot \cos(x) }{ x-\sin(x) }\right)$ = $3$
023674a7-236e-4771-9662-77157e370160
differential_calc
true

Determine where the local and absolute maxima and minima occur on the graph given. Assume domains are closed intervals unless otherwise specified.
Absolute minimum at: $x=3$ Absolute maximum at: $x=-2.4$ Local minimum at: $x=-2$, $x=1$ Local maximum at: $-1, 2$
0296afc7-857a-46e2-8497-63653d268ac8
differential_calc
false
null
Compute the derivative of the function $y = \sqrt{\frac{ x^5 \cdot \left(2 \cdot x^6+3\right) }{ \sqrt[3]{1-2 \cdot x} }}$ by taking the natural log of both sides of the equation.
Derivative: $y'=\frac{-128\cdot x^7+66\cdot x^6-84\cdot x+45}{-24\cdot x^8+12\cdot x^7-36\cdot x^2+18\cdot x}\cdot\sqrt{\frac{x^5\cdot\left(2\cdot x^6+3\right)}{\sqrt[3]{1-2\cdot x}}}$
029deb6d-6866-4e2d-9d92-3a555ec4de2c
algebra
false
null
1. On a map, the scale is 1/2 inch : 25 miles. What is the actual distance between two cities that are 3 inches apart? 2. What are the dimensions of a 15 foot by 10 foot room on a blueprint with a scale of 1.5 inches : 2 feet? 3. The distance between Newark, NJ and San Francisco, CA is 2,888 miles. How far would that measure on a map with a scale of 3 cm to 1,000 miles? 4. If the scale for a model train is 1 inch for every 10 feet of a real train, how big is the model for an 83-foot train?
1. $150$ miles 2. $11.25$ feet by $7.5$ feet 3. $8.664$ cm 4. $8.3$ inches
02a70481-c574-417a-bf03-50e5080f4d19
differential_calc
true

List all intervals where $f$ is increasing or decreasing and the minima and maxima are located.
The function is increasing at: $(-1,0)\cup(0,1)\cup(1,\infty)$ The function is decreasing at: $(-\infty,-1)$ The minimum is at: $x=-1$ The maximum is at: None
02c57487-7f56-412a-8aeb-b1abc78ac85b
sequences_series
false
null
Find the radius of convergence $R$ and interval of convergence for the power series $\sum_{n=0}^\infty a_{n} \cdot x^n$: $$ \sum_{n=1}^\infty (-1)^n \cdot \frac{ x^n }{ \ln(2 \cdot n) } $$
* $R$ = $1$ * $I$ = $(-1,1]$
02d22949-d7a2-46ca-8af8-4bda85bc8e0e
differential_calc
false
null
Sketch the curve: $$ y = 16 \cdot x^2 \cdot e^{\frac{ 1 }{ 4 \cdot x }} $$ Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-\infty,0)\cup(0,\infty)$ 2. Vertical asymptotes: $x=0$ 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(\frac{1}{8},\infty\right)$ 6. Intervals where the function is decreasing: $\left(0,\frac{1}{8}\right)$, $(-\infty,0)$ 7. Intervals where the function is concave up: $(0,\infty)$, $(-\infty,0)$ 8. Intervals where the function is concave down: None 9. Points of inflection: None
02d80ab4-c222-493c-a91d-448fba115380
multivariable_calculus
false
null
Evaluate $L=\lim_{P(x,y) \to P\left(1,\frac{ 1 }{ 2 }\right)}\left(f(x,y)\right)$ given $f(x,y) = \frac{ x^2 - 2 \cdot x^3 \cdot y - 2 \cdot x \cdot y^3 + y^2 }{ 1 + x + y - 2 \cdot x \cdot y - 2 \cdot x^2 \cdot y - 2 \cdot x \cdot y^2 }$.
The final answer: $L=\frac{1}{2}$
032cf885-c1e2-49f9-8584-c99b0161c08c
precalculus_review
false
null
Form the compositions $f\left(g(x)\right)$ and $g\left(f(x)\right)$ if $f(x) = \sin(3 \cdot x)$ and $g(x) = \frac{ 1 }{ \sqrt{2-x^2} }$. 1. Find $f\left(g(x)\right)$ and $g\left(f(x)\right)$. 2. Find the domain and range of $f\left(g(x)\right)$ and $g\left(f(x)\right)$.
1. $f\left(g(x)\right)$ = $\sin\left(\frac{3}{\sqrt{2-x^2}}\right)$ $g\left(f(x)\right)$ = $\frac{1}{\sqrt{2-\sin(3\cdot x)^2}}$ 2. Domain of $f\left(g(x)\right)$ is $\left(-\sqrt{2},\sqrt{2}\right)$ Range of $f\left(g(x)\right)$ is $[-1,1]$ Domain of $g\left(f(x)\right)$ is $(-\infty,\infty)$ Range of $g\left(f(x)\right)$ is $\left[\frac{1}{\sqrt{2}},1\right]$
03b87419-fe7c-481a-9396-1d0723fc2b15
differential_calc
false
null
Sketch the curve: $y = 5 \cdot x \cdot \sqrt{4-x^2}$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $[-2,2]$ 2. Vertical asymptotes: None 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(-\sqrt{2},\sqrt{2}\right)$ 6. Intervals where the function is decreasing: $\left(-2,-\sqrt{2}\right)$, $\left(\sqrt{2},2\right)$ 7. Intervals where the function is concave up: $(-2,0)$ 8. Intervals where the function is concave down: $(0,2)$ 9. Points of inflection: $P(0,0)$
03c28ad4-cfe4-430f-ab38-cb3e56091616
precalculus_review
false
null
Solve the following equation: $$ x^2 - x + 1 = \frac{ 1 }{ 2 } + \sqrt{x - \frac{ 3 }{ 4 }} $$
The final answer: $x=1$
040dbb94-2747-4799-89f8-dd544c248a9c
integral_calc
false
null
Consider the function $f(x) = x^2$ on $[-1,1]$ and the partition $\left\{-1, -\frac{ 1 }{ 2 }, \frac{ 1 }{ 4 }, 1\right\}$. Find the upper and lower sums.
The upper sum is: $\frac{23}{16}$ The lower sum is: $\frac{11}{64}$
0429a27b-d694-4e42-a60c-d446ae515ed2
differential_calc
true

The graph of $g'$ is given. Let $g$ be a differentiable function with $g(1)=-4$. The graph of $g'(x)$, the derivative of $g$, is shown. Write an equation for the line tangent to the graph of $g$ at $x=1$.
The equation for the tangent line is $y+4=-3\cdot(x-1)$
04960c86-a731-4641-a3a8-fd0529de5a51
multivariable_calculus
false
null
Evaluate $\int\int\int_{E}{(x+2 \cdot y \cdot z) \, dV}$, where $E = \left\{(x,y,z) | 0 \le x \le 1, 0 \le y \le x, 0 \le z \le 5-x-y \right\}$.
$I$ = $\frac{439}{120}$

U-MATH is a comprehensive benchmark of 1,100 unpublished university-level problems sourced from real teaching materials.

It is designed to evaluate the mathematical reasoning capabilities of Large Language Models (LLMs).
The dataset is balanced across six core mathematical topics and includes 20% of multimodal problems (involving visual elements such as graphs and diagrams).

For fine-grained performance evaluation results and detailed discussion, check out our paper.

Key Features

  • Topics Covered: Precalculus, Algebra, Differential Calculus, Integral Calculus, Multivariable Calculus, Sequences & Series.
  • Problem Format: Free-form answer with LLM judgement
  • Evaluation Metrics: Accuracy; splits by subject and text-only vs multimodal problem type.
  • Curation: Original problems composed by math professors and used in university curricula, samples validated by math experts at Toloka AI, Gradarius

Use it

from datasets import load_dataset
ds = load_dataset('toloka/u-math', split='test')

Dataset Fields

uuid: problem id
has_image: a boolean flag on whether the problem is multimodal or not
image: binary data encoding the accompanying image, empty for text-only problems
subject: subject tag marking the topic that the problem belongs to
problem_statement: problem formulation, written in natural language
golden_answer: a correct solution for the problem, written in natural language \

For meta-evaluation (evaluating the quality of LLM judges), refer to the µ-MATH dataset.

Evaluation Results

umath-table
umath-bar

The prompt used for inference:

{problem_statement}
Please reason step by step, and put your final answer within \boxed{}

Licensing Information

All the dataset contents are available under the MIT license.

Citation

If you use U-MATH or μ-MATH in your research, please cite the paper:

@inproceedings{umath2024,
title={U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs},
author={Konstantin Chernyshev, Vitaliy Polshkov, Ekaterina Artemova, Alex Myasnikov, Vlad Stepanov, Alexei Miasnikov and Sergei Tilga},
year={2024}
}

Contact

For inquiries, please contact kchernyshev@toloka.ai

Downloads last month
261

Collection including toloka/u-math