uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
2d64140b-ec41-43b2-aa47-a02a2b515f51
integral_calc
false
null
Compute the integral: $$ \int x^{-4} \cdot \left(3+x^2\right)^{\frac{ 1 }{ 2 }} \, dx $$
$\int x^{-4} \cdot \left(3+x^2\right)^{\frac{ 1 }{ 2 }} \, dx$ = $C-\frac{1}{9}\cdot\left(1+\frac{3}{x^2}\right)\cdot\sqrt{1+\frac{3}{x^2}}$
2d799998-115a-489b-a48b-57090954303e
differential_calc
false
null
Compute the limit: $$ \lim_{x \to 5} \left( \frac{ 3 \cdot x }{ x-5 }-\frac{ 3 }{ \ln\left(\frac{ x }{ 5 }\right) } \right) $$
$\lim_{x \to 5} \left( \frac{ 3 \cdot x }{ x-5 }-\frac{ 3 }{ \ln\left(\frac{ x }{ 5 }\right) } \right)$ = $\frac{3}{2}$
2e1592e8-b882-4761-b04a-613d85f94fbd
precalculus_review
false
null
Find the domain of the function $f(x) = \frac{ 1 }{ \sqrt{ |x| - x } }$.
The final answer: $(-\infty,0)$
2e672f49-9aec-4635-895a-d3f19e391509
differential_calc
true

Use the following graphs and the limit laws to evaluate the limit $\lim_{x \to -9}\left(x \cdot f(x) + 2 \cdot g(x)\right)$.
$\lim_{x \to -9}\left(x \cdot f(x) + 2 \cdot g(x)\right)$ = $-46$
2e6afcbe-7883-4e94-9b96-cfc96e2841fc
integral_calc
false
null
Solve the integral: $$ \int 3 \cdot \cot(-7 \cdot x)^6 \, dx $$
$\int 3 \cdot \cot(-7 \cdot x)^6 \, dx$ = $C-\frac{3}{7}\cdot\left(\frac{1}{5}\cdot\left(\cot(7\cdot x)\right)^5+\cot(7\cdot x)-\frac{1}{3}\cdot\left(\cot(7\cdot x)\right)^3-\arctan\left(\cot(7\cdot x)\right)\right)$
2e8c12b1-bd78-4c9e-a3f0-0e5888d2e71e
multivariable_calculus
false
null
Evaluate the triple integral of the function $f(x,y,z) = z$ over the solid $B$ bounded by the half-sphere $x^2+y^2+z^2=16$ with $z \ge 0$ and below by the cone $2 \cdot z^2 = x^2+y^2$.
$\int\int\int_{B}{f(x,y,z) d V}$ = $\frac{128\cdot\pi}{3}$
2ec21ca8-41a5-4d45-82cf-4ea1a390ce7b
multivariable_calculus
false
null
Find a normal vector and a tangent vector for $2 \cdot x^3 - x^2 \cdot y^2 = 3 \cdot x - y - 7$ at point $P : (1,-2)$
Normal vector: $\vec{N}=\vec{i}-\vec{j}$ Tangent vector: $\vec{T}=\vec{i}+\vec{j}$
2ec678c4-d3d1-479f-9dc7-3117fb7bb232
differential_calc
true

Use the following graph and find: $\lim_{x \to 0^{+}}\left(f(x)\right)$
$\lim_{x \to 0^{+}}\left(f(x)\right)$: $-4$
2f336dde-88d0-403c-9bb7-60cb816dc6d7
differential_calc
false
null
$f(x) = \frac{ 1 }{ 4 } \cdot \sqrt{x} + \frac{ 1 }{ x }$, $x > 0$. Determine: 1. Intervals where $f$ is increasing 2. Intervals where $f$ is decreasing 3. Local minima of $f$ 4. Local maxima of $f$ 5. Intervals where $f$ is concave up 6. Intervals where $f$ is concave down 7. The inflection points of $f$
1. Intervals where $f$ is increasing: $(4,\infty)$ 2. Intervals where $f$ is decreasing: $(0,4)$ 3. Local minima of $f$: $4$ 4. Local maxima of $f$: None 5. Intervals where $f$ is concave up: $\left(0,8\cdot\sqrt[3]{2}\right)$ 6. Intervals where $f$ is concave down: $\left(8\cdot\sqrt[3]{2},\infty\right)$ 7. The inflection points of $f$: $8\cdot\sqrt[3]{2}$
2f7471d9-02df-48a7-8044-e5409141de5a
multivariable_calculus
false
null
Find the average value of the function $f(x,y) = \arctan(x \cdot y)$ over the region $R = [0,1] \times [0,1]$.
$f_{ave}$ = $\frac{\pi-\ln(4)}{4}-\frac{\pi^2}{48}$
2f7ca7bd-b50a-4cf6-9870-cec83f04faa0
differential_calc
false
null
Find the extrema of a function $y = \frac{ 2 \cdot x^4 }{ 4 } - \frac{ x^3 }{ 3 } - \frac{ 3 \cdot x^2 }{ 2 } + 2$. Then determine the largest and smallest value of the function when $-2 \le x \le 4$.
1. Extrema points: $P\left(\frac{3}{2},\frac{1}{32}\right)$, $P\left(-1,\frac{4}{3}\right)$, $P(0,2)$ 2. The largest value: $\frac{254}{3}$ 3. The smallest value: $\frac{1}{32}$
2fa3efa3-1a87-4757-879d-66fa65c0cf62
algebra
false
null
Write an expression for a rational function with the given characteristics: 1. vertical asymptotes $x=-3$ and $x=2$, 2. x-intercepts at $P(1,0)$ and $P(-4,0)$, 3. y-intercept at $P(0,5)$.
The rational function satisfying the given conditions is $f(x)=\frac{15\cdot(x-1)\cdot(x+4)}{2\cdot(x+3)\cdot(x-2)}$
2fe7cf5b-86d4-417a-a942-46e2194625eb
integral_calc
false
null
Solve the integral: $$ \int \cot(x)^4 \, dx $$
$\int \cot(x)^4 \, dx$ = $C+\cot(x)-\frac{1}{3}\cdot\left(\cot(x)\right)^3-\arctan\left(\cot(x)\right)$
2ff5a6e4-6a0a-48e5-adfc-bdaf179a7fc9
multivariable_calculus
false
null
Use the method of Lagrange multipliers to maximize $U(x,y) = 8 \cdot x^{\frac{ 4 }{ 5 }} \cdot y^{\frac{ 1 }{ 5 }}$ subject to the constraint $4 \cdot x + 2 \cdot y = 12$.
Answer: maximum $16.715$ at $P(2.4,1.2)$
309063a4-cd05-4d2e-a3ff-4f5937d4df66
integral_calc
true

Let $A$ be the region bounded by the graph $x=(y+2)^2$, $y=x-4$, $y=2$, and the $y$-axis as shown in the figure above. 1. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid generated when $A$ is revolved about the $y$-axis. 2. Find the value of the volume of the solid using the integral expression found in part (a).
1. $\int_{-2}^0\left(\pi\cdot\left((y+2)^2\right)^2\right)dy+\int_0^2\left(\pi\cdot(y+4)^2\right)dy$ 2. $179.28$ units³
30b1fff3-c7e8-4443-8b21-ad150fba7da0
algebra
false
null
Note that $1 \in (-3,7)$. Think of the solution of the inequality $|x-1|<\delta$, where $\delta$ (delta, a Greek letter) is a constant. Find the greatest $\delta$ so that the solution is completely on the interval $(-3,7)$. [Hint: How far you can go within $(-3,7)$, starting from $1$?]
The final answer: $4$
30b647a3-04b2-4224-8e1d-9a46f4fe6103
integral_calc
false
null
Solve the integral: $$ \int \left(\frac{ x+3 }{ x-3 }\right)^{\frac{ 3 }{ 2 }} \, dx $$
$\int \left(\frac{ x+3 }{ x-3 }\right)^{\frac{ 3 }{ 2 }} \, dx$ = $C+\sqrt{\frac{x+3}{x-3}}\cdot(x-15)-9\cdot\ln\left(\left|\frac{\sqrt{x-3}-\sqrt{x+3}}{\sqrt{x-3}+\sqrt{x+3}}\right|\right)$
30cec86e-4be2-4e33-b449-e66f79f364a2
multivariable_calculus
false
null
$E$ is located above the xy-plane, below $z=1$, outside the one-sheeted hyperboloid $x^2+y^2-z^2=1$, and inside the cylinder $x^2+y^2=2$. Find the volume of $E$.
Volume = $\frac{2\cdot\pi}{3}$
30d63199-0a17-480a-9a4e-b3761098338b
algebra
true

Use the graph of the function to estimate the intervals on which the function is increasing or decreasing. A function is increasing/decreasing on an interval when its values increase/decrease as $x$ values increase (moving to the right on the graph).
The final answer: Interval(s) of increase: $(-1.5,2)$ Interval(s) of decrease: $(-\infty,-1.5)\cup(2,\infty)$
3105d97f-f772-43ee-ad96-a977b62b3322
multivariable_calculus
false
null
Develop the Cartesian equation for the following parametric equations: $x = 3 \cdot t + \frac{ 3 }{ 4 \cdot t }$ $y = 5 \cdot t - \frac{ 5 }{ 4 \cdot t }$
The final answer: $\frac{x^2}{9}-\frac{y^2}{25}=1$
313f8edb-e1ee-4bc2-ac17-270dc7106f35
multivariable_calculus
false
null
Evaluate the integral by choosing the order of integration: $$ \int_{1}^e \int_{1}^e \left( \frac{ x \cdot \ln(y) }{ \sqrt{y} } + \frac{ y \cdot \ln(x) }{ \sqrt{x} } \right) \, dy \, dx $$
$\int_{1}^e \int_{1}^e \left( \frac{ x \cdot \ln(y) }{ \sqrt{y} } + \frac{ y \cdot \ln(x) }{ \sqrt{x} } \right) \, dy \, dx$ = $2\cdot\sqrt{e}+4\cdot e^2-4-2\cdot e^2\cdot\sqrt{e}$
31b62f10-54ed-4f45-a532-2220b453838d
differential_calc
false
null
Make full curve sketching of $y = \ln\left(\left|\frac{ 2 \cdot x-5 }{ 2 \cdot x+5 }\right|\right)$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $\left(-\infty,-\frac{5}{2}\right)\cup\left(-\frac{5}{2},\frac{5}{2}\right)\cup\left(\frac{5}{2},\infty\right)$ 2. Vertical asymptotes $x=-\frac{5}{2}$, $x=\frac{5}{2}$ 3. Horizontal asymptotes $y=0$ 4. Slant asymptotes None 5. Intervals where the function is increasing $\left(-\infty,-\frac{5}{2}\right)$, $\left(-\frac{5}{2},0\right)$ 6. Intervals where the function is decreasing $\left(-\frac{5}{2},\frac{5}{2}\right)$ 7. Intervals where the function is concave up $\left(-\infty,-\frac{5}{2}\right)$, $\left(\frac{5}{2},\infty\right)$ 8. Intervals where the function is concave down $\left(\frac{5}{2},\infty\right)$, $\left(0,\frac{5}{2}\right)$ 9. Points of inflection $P(0,0)$
324f58d5-6dfb-461d-9750-6e713fedb6f6
integral_calc
false
null
Compute the length of the arc $y = 3 \cdot \ln(2 \cdot x)$ between the points $x = \sqrt{7}$ and $x = 4$.
Arc Length: $1+\frac{3}{2}\cdot\ln\left(\frac{7}{4}\right)$
3265c2a2-779f-4ede-a31f-feb2dde5e7cf
sequences_series
false
null
Find $L=\lim_{n \to \infty}\left(x_{n}\right)$, where $x_{n} = \frac{ \sqrt{n^2+1} + \sqrt{n} }{ \sqrt[4]{n^3+n} - \sqrt{n} }$ is the general term of a sequence.
The final answer: $L=\infty$
32d27abf-2f33-48e4-84fb-756af840c821
precalculus_review
false
null
Find points on a coordinate plane that satisfy the equation $x \cdot (x-2) + y \cdot (y+4) + 5 = 0$.
The final answer: $(1,-2)$
32f04626-b937-48c5-a7e7-708115124653
precalculus_review
false
null
Find points on a coordinate plane that satisfy the equation $y = \sqrt{\ln\left(\cos(x)\right)}$.
The final answer: $(2\cdot k\cdot\pi,0)$
33478f29-8573-4922-a984-f7f20a3f68c9
differential_calc
false
null
Compute the derivative $y^{(5)}$ of the function $y = e^{\frac{ x }{ 3 }} \cdot \sin\left(\frac{ x }{ 2 }\right)$.
$y^{(5)}$ = $\frac{1}{7776}\cdot e^{\frac{x}{3}}\cdot\left(122\cdot\sin\left(\frac{x}{2}\right)-597\cdot\cos\left(\frac{x}{2}\right)\right)$
3355c2b6-9095-4bb3-90ef-51b6fb9f3708
algebra
false
null
Identify all points of removable discontinuity (singularity) of the function $f(x) = \frac{ x^2 - 4 }{ x - 2 }$.
$f(x)$ has removable discontinuities at $x=2$
337a55dc-e856-4e1e-b717-2c1ca37ca438
differential_calc
false
null
The cost for printing a book can be given by the equation $C(x) = 1000 + 12 \cdot x + \frac{ 1 }{ 2 } \cdot x^{\frac{ 2 }{ 3 }}$. Use Newton’s method to find the break-even point if the printer sells each book for $\$20$.
$127$ books
33d1cff7-b004-4c49-878f-f1056b5dd633
multivariable_calculus
false
null
Use the method of Lagrange multipliers to find the maximum and minimum values of $f(x,y,z) = x^2 + y^2 + z^2$ subject to the constraint $x^4 + y^4 + z^4 = 1$. If there is no maximum or minimum, then write $\text{None}$ in the answer.
Maximum: $\sqrt{3}$ Minimum: $1$
34800a4c-8294-4b02-a23e-f4be6115f560
differential_calc
true

Let $h$ be a function defined by $h(x) = \left( rac{ f(x) }{ g(x) } ight)^2$. Selected values of $f$ and $f'$ are shown in the table below. The graph of $g$ is shown below. If $f$ and $g$ are continuous functions, determine $h'(0)$ (else write None). | $x$ | $f(x)$ | $f'(x)$ | | --- | --- | --- | | $0$ | $2$ | $5$ | | $1$ | $1$ | $-2$ | | $2$ | $4$ | $4$ | | $3$ | $3$ | $-3$ |
$h'(0)$ = $\frac{4}{5}$
3497d594-978a-4c17-9210-5654e5e7023a
algebra
false
null
The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $84\ 000$ subscribers at a quarterly charge of $\$30$. Market research has suggested that if the owners raise the price to $\$33$, they would lose $7000$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?
The final answer: $33$
34bdbf1b-9f1b-43b3-9195-dabc016eb1a7
differential_calc
false
null
Find the derivative of $f(x) = \frac{ \left(\left(\tan(x)\right)^2-1\right) \cdot \left(\left(\tan(x)\right)^4+10 \cdot \left(\tan(x)\right)^2+1\right) }{ 3 \cdot \left(\tan(x)\right)^3 }$
The final answer: $f'(x)=\left(\tan(x)\right)^4+4\cdot\left(\tan(x)\right)^2+\frac{4}{\left(\tan(x)\right)^2}+\frac{1}{\left(\tan(x)\right)^4}+6$
34ee9891-810d-43a5-9a82-9d2c37ec5f6d
sequences_series
false
null
Decompose the function $f(x) = \frac{ 1 }{ 2 } \cdot (\pi-x)$ into a trigonometric series on the interval $[0,2 \cdot \pi]$.
The final answer: $f(x)=\sin(x)+\frac{1}{2}\cdot\sin(2\cdot x)+\frac{1}{3}\cdot\sin(3\cdot x)+\cdots+\frac{1}{n}\cdot\sin(n\cdot x)+\cdots$
34f480a3-bc95-4865-8a8a-cf0132878a01
integral_calc
false
null
Compute the integral: $$ \int_{0}^1 \frac{ \sqrt{x}+1 }{ \sqrt[3]{x}+1 } \, dx $$
$\int_{0}^1 \frac{ \sqrt{x}+1 }{ \sqrt[3]{x}+1 } \, dx$ = $3\cdot\ln(2)+\frac{3\cdot\pi}{2}-\frac{409}{70}$
35180e65-8d1d-4399-86d3-ca456db0e24c
multivariable_calculus
false
null
Evaluate the integral by choosing the order of integration: $$ \int_{0}^1 \int_{0}^{\frac{ 1 }{ 2 }} \left(\arcsin(x) + \arcsin(y)\right) \, dy \, dx $$
$\int_{0}^1 \int_{0}^{\frac{ 1 }{ 2 }} \left(\arcsin(x) + \arcsin(y)\right) \, dy \, dx$ = $\frac{\pi}{12}+\frac{\sqrt{3}}{2}+\frac{\arcsin(1)}{2}-\frac{3}{2}$
35505dd4-7798-48a2-9d3b-11edc71de275
multivariable_calculus
false
null
Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-x-6 \cdot y+z=3 \cdot \cos(-x-6 \cdot y+z)$. Submit as your final answer: 1. $\frac{\partial z}{\partial x}$; 2. $\frac{\partial z}{\partial y}$.
1. $1$ 2. $6$
3592c6d2-0fb1-4557-b219-d88f5b8a7401
sequences_series
false
null
Find the Fourier integral of the function $q(x) = \begin{cases} 0, & x < 0 \\ \pi \cdot x, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$
$q(x) = $\int_0^\infty\left(\frac{\left(\alpha\cdot\sin\left(\alpha\right)+\cos\left(\alpha\right)-1\right)\cdot\cos\left(\alpha\cdot x\right)+\left(\sin\left(\alpha\right)-\alpha\cdot\cos\left(\alpha\right)\right)\cdot\sin\left(\alpha\cdot x\right)}{\alpha^2}\right)d\alpha$
35cb0f7d-db0d-494e-980b-55bd98f0170b
sequences_series
false
null
Find the Maclaurin series for the function: $f(x) = \cos(x) - x \cdot \sin(x)$.
The series: $\sum_{n=0}^\infty\left(\frac{(-1)^n\cdot(2\cdot n+1)\cdot x^{2\cdot n}}{(2\cdot n)!}\right)$
35e4725a-56f7-46f8-8115-a4f3b75a09a2
integral_calc
true

The region bounded by the parabola $y^2 = 2 \cdot p \cdot x$ and the line AB is revolved about the Y-axis. The line AB passes through the focus of the parabola and is perpendicular to the X-axis. Find the volume of this solid of revolution using integration with respect to $y$. Use $p = \frac{ 1 }{ 2 }$.
Volume: $\frac{\pi}{20}$
363dd580-f1fc-4867-a6ef-db2a03139745
differential_calc
false
null
Evaluate $\lim_{x \to 0^{+}}\left(\left(\frac{ \tan\left(\frac{ x }{ 2 }\right) }{ \frac{ x }{ 2 } }\right)^{\frac{ 3 }{ x^2 }}\right)$ using L'Hopital's Rule.
$\lim_{x \to 0^{+}}\left(\left(\frac{ \tan\left(\frac{ x }{ 2 }\right) }{ \frac{ x }{ 2 } }\right)^{\frac{ 3 }{ x^2 }}\right)$ = $e^{\frac{1}{4}}$
3655d579-c27c-463e-8ece-662e1f8a0b02
algebra
false
null
A phone company has a monthly cellular plan, where a customer pays a flat monthly fee and then a certain amount of money per minute used on the phone. If a customer uses 410 minutes, the monthly cost will be $71.5. If the customer uses 720 minutes, the monthly cost will be $118.1. 1. Find a linear equation for the monthly cost of the cell plan as a function of $x$, the number of monthly minutes used. 2. Interpret the slope and y-intercept of the equation. 3. Use your equation to find the total monthly cost if 687 minutes are used.
1. The monthly cost function is $C(x)=0.15\cdot x+10$ 2. The flat monthly fee is $10$ and the fee for each additional minute used is $0.15$ 3. The total monthly cost if 687 minutes are used is $113.05$
36585e1b-1b7a-4835-befc-4610d20674a1
precalculus_review
false
null
A car is racing along a circular track with a diameter of 1 mile. A trainer standing in the center of the circle marks his progress every 5 seconds. After 5 seconds, the trainer has to turn $55^o$ to keep up with the car. How fast is the car traveling?
Velocity of car is $345.57519189$ mph.
36e3fe5a-1d6e-4976-b51a-6eea157d5128
precalculus_review
false
null
Find all values of $x$ that satisfy the following equation: $$ \left|\left(x^2+4 \cdot x+9\right)+(2 \cdot x-3)\right|=\left|x^2+4 \cdot x+9\right|+|2 \cdot x-3| $$
The final answer: $x\ge\frac{3}{2}$
37440b24-a694-4066-acf5-e5dc13144552
precalculus_review
false
null
Find the zeros of $\tan(x) + \tan\left(\frac{ \pi }{ 4 } + x\right) = -2$.
The final answer: $x_{1}=-\frac{ \pi }{ 3 }+\pi \cdot n$, $x_{2}=\frac{ \pi }{ 3 }+n \cdot \pi$
374da26c-e042-4624-9e44-edaf584b1909
differential_calc
true

Analyze the graph of $f'$, then list all inflection points and intervals on which $f$ is concave up and concave down.
Inflection points at: $x=0$, $x=1$ Intervals where function is concave up: $(-\infty,0)$, $(1,\infty)$ Intervals where function is concave down: $(0,1)$
3761ac12-4b27-4ca2-8fd6-345ca0a137fe
precalculus_review
false
null
Calculate $E = \left(\sin\left(\frac{ \pi }{ 8 }\right)\right)^4 + \left(\sin\left(\frac{ 3 \cdot \pi }{ 8 }\right)\right)^4 + \left(\sin\left(\frac{ 5 \cdot \pi }{ 8 }\right)\right)^4 + \left(\sin\left(\frac{ 7 \cdot \pi }{ 8 }\right)\right)^4$
The final answer: $E=\frac{3}{2}$
37d1acdf-64e4-4c6d-a76d-c273e763ad18
multivariable_calculus
false
null
Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $$ -10 \cdot x-9 \cdot y+8 \cdot z=4 \cdot \cos(-10 \cdot x-9 \cdot y+8 \cdot z) $$ Submit as your final answer: 1. $\frac{\partial z}{\partial x}$; 2. $\frac{\partial z}{\partial y}$.
1. $\frac{5}{4}$ 2. $\frac{9}{8}$
37de6838-f6c9-47b8-8257-12db6a7f5b6b
multivariable_calculus
false
null
For the following exercise, line $L$ is given. 1. Find point $P$ that belongs to the line and direction vector $\vec{v}$ of the line. Express $\vec{v}$ in component form. 2. Find the distance from the origin to line $L$. Line $L$: $-x = y + 1$, $z = 2$
1. $P$: $P(0,-1,2)$ ; $\vec{v}$= $\left\langle-1,1,0\right\rangle$ 2. $d$= $\frac{3}{\sqrt{2}}$
37e7e328-accc-4a28-98f7-7391204c2892
integral_calc
false
null
Compute the integral: $$ \int x^{-6} \cdot \left(1+x^2\right)^{\frac{ 1 }{ 2 }} \, dx $$
$\int x^{-6} \cdot \left(1+x^2\right)^{\frac{ 1 }{ 2 }} \, dx$ = $C+\frac{1}{3}\cdot\left(\frac{1}{x^2}+1\right)\cdot\sqrt{\frac{1}{x^2}+1}-\frac{1}{5}\cdot\left(\frac{1}{x^2}+1\right)^2\cdot\sqrt{\frac{1}{x^2}+1}$
37f31f02-4302-49b8-bd61-4bad89d04fe7
precalculus_review
false
null
Use the Rational Zero Theorem to find all real zeros of the following polynomial: $p(x) = x^3 - 3 \cdot x^2 - 10 \cdot x + 24$
The real zeros are $2$, $-3$, $4$
3868940c-d8fc-4b5f-a82d-15c0853f15b8
sequences_series
false
null
Find the radius of convergence and the interval of convergence for the series: $$ \sum_{n=0}^\infty \left(\frac{ x^n }{ n^n }\right) $$
$R$ = $\infty$ $I$ = $(-\infty,\infty)$
3882cc71-2ff8-4a16-8ebb-3eeee2365bfa
differential_calc
true

Use the following graphs and the limit laws to evaluate the limit $\lim_{x \to -5}\left(\frac{ 2+g(x) }{ f(x) }\right)$:
$\lim_{x \to -5}\left(\frac{ 2+g(x) }{ f(x) }\right)$ = $1$
38defb82-0872-4e28-80bc-d425575cf1ab
precalculus_review
false
null
Find the period of $f(x) = \left| \cos(x) \right|$
The final answer: $T=\pi$
3934b610-d7c8-4cec-bef7-ed06c0b05391
algebra
false
null
Rewrite the quadratic expression $x^2 - 11 \cdot x - 20$ by completing the square.
$x^2 - 11 \cdot x - 20$ = $(x-5.5)^2-50.25$
394e56e3-055c-4209-b8b1-1f2283907c2a
algebra
false
null
Use the fact that the vertex of the graph of the quadratic function is $(2,-3)$ and the graph opens up to find the domain and range of the function.
The domain is $(-\infty,\infty)$ and the range is $[-3,\infty)$
39955d74-b26d-4d7d-ae27-b93ee45f74dc
integral_calc
false
null
Compute the area of the figure bounded by curves $y = 2 \cdot x^2$, $y = 1 + x^2$, lines $x = 3$, $x = -2$, and the $x$-axis.
Area = $\frac{46}{3}$
39c876c6-191f-4992-b50f-f15595d08e4e
differential_calc
true

The following graph of the function $f$ satisfies $\lim_{x \to 3}f(x) = 2$. For $\varepsilon = 3$, find a value of $\delta > 0$ such that the precise definition of limit holds true.
$\delta \leq $1$$
3a761457-5727-4faa-b9c8-a9e3d0e1881e
precalculus_review
false
null
An alternating current for outlets in a home has voltage given by the function $V(t) = 150 \cdot \cos(368 \cdot t)$, where $V$ is the voltage in volts at time $t$ in seconds. 1. Find the period of the function. 2. Determine the number of periods that occur when $1$ sec. has passed.
1. The period of the function is $\frac{\pi}{184}$ 2. The number of periods that occur when $1$ sec. has passed is $58.56901906$
3a9ca0e5-d5e8-41d3-a45c-7623bbbb2969
precalculus_review
false
null
Evaluate the definite integral. Express answer in exact form whenever possible: $$ \int_{-\pi}^\pi \left(\cos(3 \cdot x)\right)^2 \, dx $$
$\int_{-\pi}^\pi \left(\cos(3 \cdot x)\right)^2 \, dx$ = $\pi$
3ae4b0b6-dcdf-4733-a2ff-2f6cccad2598
integral_calc
false
null
Compute the integral: $$ \int \frac{ -4 }{ 3+\sin(4 \cdot x)+\cos(4 \cdot x) } \, dx $$
$\int \frac{ -4 }{ 3+\sin(4 \cdot x)+\cos(4 \cdot x) } \, dx$ = $C-\frac{2}{\sqrt{7}}\cdot\arctan\left(\frac{2}{\sqrt{7}}\cdot\left(\frac{1}{2}+\tan(2\cdot x)\right)\right)$
3b116e5c-f065-4e95-8774-f422916f3e8a
differential_calc
false
null
Make full curve sketching of $y = \arcsin\left(\frac{ 1-x^2 }{ 1+x^2 }\right)$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes None 3. Horizontal asymptotes $y=-\frac{\pi}{2}$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(-\infty,0)$ 6. Intervals where the function is decreasing $(0,\infty)$, $(-\infty,0)$ 7. Intervals where the function is concave up $(0,\infty)$, $(-\infty,0)$ 8. Intervals where the function is concave down None 9. Points of inflection None
3b126d90-4cae-43c5-8f74-072d49ac068b
multivariable_calculus
false
null
Find the point on the surface $f(x,y) = x^2 + y^2 + 10$ nearest the plane $x + 2 \cdot y - z = 0$. Identify the point on the plane.
Answer: $P\left(\frac{47}{24},\frac{47}{12},\frac{235}{24}\right)$
3b3ba848-ee8f-4978-b0c2-ceb26a88779e
differential_calc
false
null
Sketch the curve: $$ y = \frac{ x^3 }{ 4 \cdot (x+3)^2 } $$ Provide the following: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-1\cdot\infty,-3)\cup(-3,\infty)$ 2. Vertical asymptotes: $x=-3$ 3. Horizontal asymptotes: None 4. Slant asymptotes: $y=\frac{x}{4}-\frac{3}{2}$ 5. Intervals where the function is increasing: $(-\infty,-9)$, $(-3,0)$, $(0,\infty)$ 6. Intervals where the function is decreasing: $(-9,-3)$ 7. Intervals where the function is concave up: $(-\infty,-9)$, $(-3,0)$, $(0,\infty)$ 8. Intervals where the function is concave down: $(-3,0)$, $(-\infty,-3)$ 9. Points of inflection: $P(0,0)$
3b944c43-38f7-4bfb-a805-43620f329cf8
integral_calc
true

The following table lists the electrical power in gigawatts—the rate at which energy is consumed—used in a certain city for different hours of the day, in a typical $24$-hour period, with hour $1$ corresponding to midnight to $1$ a.m. Find the total amount of power in gigawatt-hours (gW-h) consumed by the city in a typical $24$-hour period.
$911$ gW-h.
3ba2efcf-1203-4eaa-a8c6-c69f28313fa3
precalculus_review
false
null
$P = \left(\frac{ 7 }{ 25 },y\right)$, $y>0$ is a point on the unit circle. 1. Find the (exact) missing coordinate value of the point. 2. Find the values of the six trigonometric functions for the angle $\theta$ with a terminal side that passes through point $P$. Rationalize denominators.
1. The (exact) missing coordinate value of the point is: $\frac{24}{25}$ 2. The values of the six trigonometric functions are: * $\sin\left(\theta\right)$ = $\frac{24}{25}$ * $\cos\left(\theta\right)$ = $\frac{7}{25}$ * $\tan\left(\theta\right)$ = $\frac{24}{7}$ * $\csc\left(\theta\right)$ = $\frac{25}{24}$ * $\sec\left(\theta\right)$ = $\frac{25}{7}$ * $\cot\left(\theta\right)$ = $\frac{7}{24}$
3bf5f05a-3a2f-4939-9cc2-52605b9db700
integral_calc
false
null
Solve the integral: $$ \int \sqrt{\frac{ -16 \cdot \sin(-10 \cdot x) }{ 25 \cdot \cos(-10 \cdot x)^9 }} \, dx $$
$\int \sqrt{\frac{ -16 \cdot \sin(-10 \cdot x) }{ 25 \cdot \cos(-10 \cdot x)^9 }} \, dx$ = $C+\frac{2}{25}\cdot\left(\frac{2}{3}\cdot\left(\tan(10\cdot x)\right)^{\frac{3}{2}}+\frac{2}{7}\cdot\left(\tan(10\cdot x)\right)^{\frac{7}{2}}\right)$
3c05e140-7754-4647-a453-9073ee403a29
differential_calc
false
null
Find the derivative of $f(x) = \frac{ 1 }{ 15 } \cdot \left(\cos(x)\right)^3 \cdot \left(\left(\cos(x)\right)^2-5\right)$.
The final answer: $f'(x)=-\frac{\left(\cos(x)\right)^2}{15}\cdot\left(3\cdot\sin(x)\cdot\left(\left(\cos(x)\right)^2-5\right)+\cos(x)\cdot\sin(2\cdot x)\right)$
3c515761-f013-4a2c-b5f8-1a70be519118
sequences_series
false
null
Compute $\sqrt[4]{90}$ with accuracy $0.0001$.
The final answer: $3.0801$
3c7f8f93-bdba-4b7d-8e4a-4908ee1082cd
algebra
false
null
Solve the following compound (double) inequality and write your final answer in interval notation: $-4 < 3 \cdot x + 2 \le 18$
The final answer: $\left(-2,\frac{16}{3}\right]$
3cc19800-9373-4d92-97b9-b6f37e135eba
differential_calc
true

Find the values of $a$ and $b$ that make continuous and differentiable at $x=1$.
The final answer: $a = $-4$$ $b = $2$$
3cf85296-5e1a-4d78-897d-eac3424d5992
differential_calc
false
null
Find the local minimum and local maximum values of the function $f(x) = \frac{ x^4 }{ 4 } - \frac{ 11 }{ 3 } \cdot x^3 + 15 \cdot x^2 + 17$.
The point(s) where the function has a local minimum: $P(0,17)$, $P(6,89)$ The point(s) where the function has a local maximum: $P\left(5,\frac{1079}{12}\right)$
3cfb5ae6-689c-4020-9a5f-eb65dc86e266
sequences_series
false
null
Compute the first 3 nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $f(x) = \ln(\cos(x))$.
$f(x)$ = $-\frac{x^2}{2}-\frac{x^4}{12}-\frac{x^6}{45}+\cdots$
3d4817ab-4cb4-447a-ac9f-43a2d7a16970
integral_calc
false
null
Compute the integral: $$ \int \frac{ 8 }{ 7 \cdot x^2 \cdot \sqrt{5 \cdot x^2-2 \cdot x+1} } \, dx $$
Answer is: $\frac{8}{7}\cdot\left(C-\sqrt{5+\frac{1}{x}^2-\frac{1\cdot2}{x}}-\ln\left(\left|\frac{1}{x}+\sqrt{5+\frac{1}{x}^2-\frac{1\cdot2}{x}}-1\right|\right)\right)$
3d90964b-fc19-4336-ab11-3d7a1f653616
algebra
false
null
Use Descartes’ Rule of Signs to determine the possible number of positive and negative real zeros of the following polynomial: $p(x) = x^3 - 2 \cdot x^2 + x - 1$
The number of positive zeros: $1$, $3$ The number of negative zeros: $0$
3dc0ac7f-8b58-4f46-a326-120c0d57d1dc
integral_calc
false
null
Compute the integral: $$ \int \frac{ \sqrt{25+x^2} }{ 5 \cdot x } \, dx $$
$\int \frac{ \sqrt{25+x^2} }{ 5 \cdot x } \, dx$ = $C+\frac{1}{2}\cdot\ln\left(\left|\frac{\sqrt{25+x^2}-5}{5+\sqrt{25+x^2}}\right|\right)+\frac{1}{5}\cdot\sqrt{25+x^2}$
3e091f07-ec1a-4a3f-a368-62e4012f1399
integral_calc
false
null
Compute the integral: $$ \int \sin\left(\frac{ x }{ 2 }\right)^5 \, dx $$
$\int \sin\left(\frac{ x }{ 2 }\right)^5 \, dx$ = $-\frac{2\cdot\sin\left(\frac{x}{2}\right)^4\cdot\cos\left(\frac{x}{2}\right)}{5}+\frac{4}{5}\cdot\left(-\frac{2}{3}\cdot\sin\left(\frac{x}{2}\right)^2\cdot\cos\left(\frac{x}{2}\right)-\frac{4}{3}\cdot\cos\left(\frac{x}{2}\right)\right)+C$
3e0aa281-8701-4f9a-a1ce-c60021ecb125
multivariable_calculus
false
null
Evaluate the integral $\int\int\int_{E}{(x+y) \, dV}$, where $E$ is the region defined by: $$ E = \left\{ (x,y,z) \, | \, 0 \le x \le \sqrt{1-y^2}, \, 0 \le y \le 1, \, 0 \le z \le 1-x \right\} $$
$I$ = $\frac{1}{48}\cdot(26-3\cdot\pi)$
3e310e2e-ca05-4323-8356-e67852c3dc4a
multivariable_calculus
false
null
Use the second derivative test to identify any critical points of the function $f(x,y) = 7 \cdot x^2 \cdot y + 9 \cdot x \cdot y^2$, and determine whether each critical point is a maximum, minimum, saddle point, or none of these.
Maximum: None Minimum: None Saddle point: None The second derivative test is inconclusive at: $P(0,0)$
3e35605b-4778-4579-a47e-2caf92caeb45
differential_calc
false
null
Find any local extrema for $s = \frac{ \pi }{ 2 } - \left| \arctan\left( x^2 - 1 \right) \right|$. Submit as your final answer: 1. The point(s), where the function has local maximum(s); 2. The point(s), where the function has local minimum(s).
1. Local Maximum(s) $P\left(-1,\frac{\pi}{2}\right)$, $P\left(1,\frac{\pi}{2}\right)$ 2. Local Minimum(s) $P\left(0,\frac{\pi}{4}\right)$
3e60b21a-39a4-4bfb-a47c-3798fee97a94
precalculus_review
true

The given graph is of the form $y = A \cdot \sin(B \cdot x)$ or $y = A \cdot \cos(B \cdot x)$, where $B > 0$. Write the equation of the graph.
The equation of the graph: $y=-2\cdot\cos(\pi\cdot x)$
3eaa5161-484b-40de-982c-87a1aec7f5d5
sequences_series
false
null
Evaluate the sum of the series $\sum_{n=1}^\infty\left(\frac{ 1 }{ n \cdot (n+1) \cdot (n+2) }\right)$. (Hint: $\frac{ 1 }{ n \cdot (n+1) \cdot (n+2) }=\frac{ 1 }{ 2 \cdot n }-\frac{ 1 }{ n+1 }+\frac{ 1 }{ 2 \cdot (n+2) }$)
$\sum_{n=1}^\infty\left(\frac{ 1 }{ n \cdot (n+1) \cdot (n+2) }\right)$ = $\frac{1}{4}$
3ee1b980-1888-485a-ae03-fd08a495dbd8
algebra
true

Using the given graphs of $f(x)$ and $g(x)$, find $g\left(f(1)\right)$.
The final answer: $g\left(f(1)\right)$ = $4$
3ef90475-04a4-4e4f-9125-9db390b3a277
multivariable_calculus
false
null
Determine the coordinates, if any, for which $f(x,y) = 24 \cdot x + 12 \cdot y - 8 \cdot x \cdot y - 4 \cdot x^2 - 6 \cdot y^2$ has 1. a Relative Minimum(s) 2. a Relative Maximum(s) 3. a Saddle Point(s) If a Relative Minimum or Maximum, find the Minimum or Maximum value. If none, enter None.
1. The function $f(x,y)$ has Relative Minimum(s) at None with the value(s) None 2. The function $f(x,y)$ has Relative Maximum(s) at $P(6,-3)$ with the value(s) $54$ 3. The function $f(x,y)$ has a Saddle Point(s) at None
3f0c9f6c-3adf-47e7-abca-d957dd1b58e5
sequences_series
false
null
Use the substitution $(b+x)^r = (b+a)^r \cdot \left(1+\frac{ x-a }{ b+a }\right)^r$ in the binomial expansion to find the Taylor series of the function $\sqrt{2 \cdot x-x^2}$ with the center $a=1$.
$\sqrt{2 \cdot x-x^2}$ = $\sum_{n=0}^\infty\left((-1)^n\cdot C_{\frac{1}{2}}^n\cdot(x-1)^{2\cdot n}\right)$
3f25f089-28ec-4e69-9844-a0fec7031aee
multivariable_calculus
true

Find the surface area bounded by the curves $y=2^x$, $y=2^{-2 \cdot x}$, and $y=4$.
$S$ = $\frac{24-\frac{9}{\ln(2)}}{2}$
3f5c9b71-a742-4303-afc0-19085f5bde1e
differential_calc
true

Use the following graph to evaluate: 1. $f'(-0.5)$ 2. $f'(0)$ 3. $f'(1)$ 4. $f'(2)$ 5. $f'(3)$ If it doesn't exist, then write $\text{None}$.
1. $f'(-0.5)$: $1$ 2. $f'(0)$: None 3. $f'(1)$: $-1$ 4. $f'(2)$: None 5. $f'(3)$: $2$
3f808070-9259-416b-a36a-b19055958dcb
integral_calc
false
null
Solve the integral: $$ \int \tan(x)^4 \, dx $$
$\int \tan(x)^4 \, dx$ = $C+\frac{1}{3}\cdot\left(\tan(x)\right)^3+\arctan\left(\tan(x)\right)-\tan(x)$
3f809052-b6b6-47df-b4fc-9b20684a67e7
sequences_series
false
null
Find the Fourier series of the function $u = \left| \sin(x) \right|$ in the interval $[-\pi, \pi]$.
The Fourier series is: $\frac{2}{\pi}-\frac{4}{\pi}\cdot\left(\frac{\cos(2\cdot x)}{1\cdot3}+\frac{\cos(4\cdot x)}{3\cdot5}+\frac{\cos(6\cdot x)}{5\cdot7}+\cdots\right)$
3fae81c2-34d5-40d0-a54b-acbf74cc2037
precalculus_review
false
null
The cost to remove a toxin from a lake is modeled by the function $C(p) = \frac{ 75 \cdot p }{ 85-p }$, where $C$ is the cost (in thousands of dollars) and $p$ is the amount of toxin in a small lake (measured in parts per billion [ppb]). This model is valid only when the amount of toxin is less than $85$ ppb. 1. Find the cost to remove $25$ ppb, $40$ ppb, and $50$ ppb of the toxin from the lake. 2. Find the inverse function. 3. Use part b. to determine how much toxin is removed for $\$50000$.
1. The cost to remove $25$ ppb is: $31.25$ thousand dollars The cost to remove $40$ ppb is: $66.66666667$ thousand dollars The cost to remove $50$ ppb is: $107.14285714$ thousand dollars 2. $p(C)=\frac{85\cdot C}{75+C}$ 3. $34$ ppb
3fc943b6-d10d-40d3-965c-2b98d04be288
multivariable_calculus
false
null
Calculate the area of the surface formed by rotating the astroid $x^{\frac{ 2 }{ 3 }} + y^{\frac{ 2 }{ 3 }} = 2^{\frac{ 2 }{ 3 }}$ about the x-axis.
The final answer: $\frac{48\cdot\pi}{5}$
4050b38b-62c7-4952-b909-c0012fe5130d
algebra
false
null
Use the properties of logarithms to expand the logarithm $\ln\left(y \cdot \sqrt{\frac{ y }{ 1-y }}\right)$ as much as possible. Rewrite the expression as a sum, difference, or product of logs.
The final answer: $\frac{3}{2}\cdot\ln(y)-\frac{1}{2}\cdot\ln(1-y)$
405af248-578b-4765-bfd1-52a2223805d6
algebra
false
null
Multiply the rational expressions and express the product in simplest form: $$ \frac{ 2 \cdot d^2 + d - 45 }{ d^2 + 7 \cdot d + 10 } \cdot \frac{ 4 \cdot d^2 + 7 \cdot d - 2 }{ 4 \cdot d^2 + 31 \cdot d - 8 } $$
The final answer: $\frac{(2\cdot d-9)}{(d+8)}$
40a59d5b-7cc2-4527-8be9-d64c434be864
multivariable_calculus
false
null
Evaluate $\int\int_{D}{\left(\int_{0}^{4 \cdot x^2+4 \cdot y^2}{y \, dz}\right) \, dA}$, where $D = \left\{(x,y) | x^2+y^2 \le 4, y \ge 1, x \ge 0\right\}$ is the projection of $E$ onto the $x \cdot y$-plane.
$I$ = $\frac{274}{15}$
412a48cb-7490-498f-ae2c-160d74d3e912
sequences_series
false
null
Consider the function $y = \left| \cos\left( \frac{ x }{ 4 } \right) \right|$. 1. Find the Fourier series of the function. 2. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty \frac{ (-1)^n }{ 4 \cdot n^2 - 1 }$. 3. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty \frac{ 1 }{ 4 \cdot n^2 - 1 }$.
1. The Fourier series is $\frac{2}{\pi}+\sum_{n=1}^\infty\left(\frac{4\cdot(-1)^n}{\pi\cdot\left(1-4\cdot n^2\right)}\cdot\cos\left(\frac{n\cdot x}{2}\right)\right)$ 2. The sum of the series $\sum_{n=1}^\infty \frac{ (-1)^n }{ 4 \cdot n^2 - 1 }$ is $\frac{(2-\pi)}{4}$ 3. The sum of the series $\sum_{n=1}^\infty \frac{ 1 }{ 4 \cdot n^2 - 1 }$ is $\frac{1}{2}$
413e37c6-98fa-4a69-b221-df34e3edf581
precalculus_review
false
null
Solve $\cos(2 \cdot t) - 5 \cdot \sin(t) - 3 = 0$.
The final answer: $t=(-1)^{n+1}\cdot\frac{\pi}{6}+n\cdot\pi$
4209a5fe-b497-4040-8ef0-966c0d49f267
multivariable_calculus
false
null
Find the center of mass of the region $\rho(x,y,z) = z$ on the inverted cone with radius $2$ and height $2$.
Center of mass: $P\left(0,0,\frac{8}{5}\right)$
429cab49-5ba8-46af-84cc-70f96e481e6a
algebra
false
null
Solve the following equations: 1. $-10 c = -80$ 2. $n - (-6) = 12$ 3. $-82 + x = -20$ 4. $- \frac{ r }{ 2 } = 5$ 5. $r - 3.4 = 7.1$ 6. $\frac{ g }{ 2.5 } = 1.8$ 7. $4.8 m = 43.2$ 8. $\frac{ 3 }{ 4 } t = \frac{ 9 }{ 20 }$ 9. $3\frac{ 2 }{ 3 } + m = 5\frac{ 1 }{ 6 }$
The solutions to the given equations are: 1. $c=8$ 2. $n=6$ 3. $x=62$ 4. $r=-10$ 5. $r=10.5$ 6. $g=\frac{ 9 }{ 2 }$ 7. $m=9$ 8. $t=\frac{3}{5}$ 9. $m=\frac{3}{2}$
42ad9bcd-2e08-48bf-b2c5-8cbbbf1603db
integral_calc
false
null
The region bounded by the arc of the curve $y = \sqrt{2} \cdot \sin(2 \cdot x)$, $0 \le x \le \frac{ \pi }{ 2 }$, is revolved around the x-axis. Compute the surface area of this solid of revolution.
Surface Area: $\frac{\pi}{4}\cdot\left(12\cdot\sqrt{2}+\ln\left(17+12\cdot\sqrt{2}\right)\right)$
42c46aac-2976-4b49-a356-6d6ad55f62b2
sequences_series
false
null
Given that $\frac{ 1 }{ 1-x } = \sum_{n=0}^\infty x^n$, use term-by-term differentiation or integration to find a power series for the function $f(x) = \frac{ 2 \cdot x }{ \left(1-x^2\right)^2 }$ centered at $x=0$.
$\frac{ 2 \cdot x }{ \left(1-x^2\right)^2 }$ = $\sum_{n=0}^\infty\left(2\cdot(n+1)\cdot x^{2\cdot n+1}\right)$