uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
42ca2f4a-f9f4-4a24-9edf-76a32286a185
algebra
false
null
Solve the following inequality: $|-12 x-6| \ge 2$. Express your answer in the interval form.
Solution in the interval form: $\left(-\infty,\ -\frac{ 2 }{ 3 }\right] \cup \left[-\frac{ 1 }{ 3 },\ \infty\right)$ *Note: enter an interval or union of intervals. If there is no solution, leave empty or enter "none".*
42e272d8-b9fa-4658-96c0-9c6d0121341d
differential_calc
false
null
Analyze the curve $$ y = \frac{ 2 \cdot x^3 }{ x^2 - 4 } $$ and submit as your final answer the following: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-\infty,-2)\cup(-2,2)\cup(2,\infty)$ 2. Vertical asymptotes (leave blank if none): $x=-2$, $x=2$ 3. Horizontal asymptotes (leave blank if none): None 4. Slant asymptotes (leave blank if none): $y=2\cdot x$ 5. Intervals where the function is increasing (leave blank if none): $\left(-\infty,-2\cdot\sqrt{3}\right)\cup\left(2\cdot\sqrt{3},\infty\right)$ 6. Intervals where the function is decreasing (leave blank if none): $\left(-2\cdot\sqrt{3},-2\right)\cup(-2,2)\cup\left(2,2\cdot\sqrt{3}\right)$ 7. Intervals where the function is concave up (leave blank if none): $(-2,0)\cup(2,\infty)$ 8. Intervals where the function is concave down (leave blank if none): $(-\infty,-2)\cup(0,2)$ 9. Points of inflection (leave blank if none): $x=0$
4301fe9b-6f1c-4157-a503-c9a4a63aac9b
differential_calc
false
null
Sketch the curve: $$ y = \frac{ x^3 }{ 3 \cdot (x+2)^2 } $$ Provide the following: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-1\cdot\infty,-2)\cup(-2,\infty)$ 2. Vertical asymptotes: $x=-2$ 3. Horizontal asymptotes: None 4. Slant asymptotes: $y=\frac{x}{3}-\frac{4}{3}$ 5. Intervals where the function is increasing: $(-\infty,-6)$, $(0,\infty)$, $(-2,0)$ 6. Intervals where the function is decreasing: $(-6,-2)$ 7. Intervals where the function is concave up: $(0,\infty)$ 8. Intervals where the function is concave down: $(-2,0)$, $(-\infty,-2)$ 9. Points of inflection: $P(0,0)$
4311c676-bbf4-4e98-8e11-adf7b06738e8
precalculus_review
false
null
Solve the inequality: $2 \le |x+5| \le 4$
Write your final answer as intervals: $[-9,-7]\cup[-3,-1]$
432ae8b3-c454-430c-b444-f92da3c288d9
sequences_series
false
null
Find the Taylor polynomial $P_{4}$ for the function $f(x) = \sec(x)$.
$P_{4}$ = $1+\frac{1}{2}\cdot x^2+\frac{5}{24}\cdot x^4$
436d359e-a6d2-4758-a930-95a641e3d787
multivariable_calculus
false
null
Determine the equation of the ellipse using the information given: Endpoints of major axis at $(0,2)$, $(0,-2)$ and foci located at $(3,0)$, $(-3,0)$.
The equation is: $\frac{x^2}{13}+\frac{y^2}{4}=1$
43aab6e3-8669-4193-993c-885a518d1101
differential_calc
false
null
Find the equation(s) of the tangent line(s) to the curve $y = 3 \cdot x^4 - 9 \cdot x^2 + 5$, that also passes through the point $\left(0,\frac{ 29 }{ 4 }\right)$.
Tangent Line(s): $4\cdot y-24\cdot\sqrt{2}\cdot x-29=0$, $4\cdot y+24\cdot\sqrt{2}\cdot x-29=0$
43c2c82e-a54b-40cb-8b95-07cf15365044
precalculus_review
false
null
If a culture of bacteria doubles in $3$ hours, how many hours does it take to multiply by $10$? Use $y=y_{0} \cdot e^{k \cdot t}$, where $y_{0}$ is the beginning amount, $y$ is the ending amount, $k$ is the growth or decay rate, and $t$ is time. Leave your answer in exact form.
It takes $\frac{ 3 \cdot \ln(10) }{ \ln(2) }$ hours.
43ce18b9-35be-43a7-b18f-bff62d27b1d5
differential_calc
false
null
Sketch the curve: $y = \sqrt{\frac{ 64-x^3 }{ 3 \cdot x }}$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(0,4]$ 2. Vertical asymptotes: $x=0$ 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: None 6. Intervals where the function is decreasing: $(0,4]$ 7. Intervals where the function is concave up: $\left(0,2\cdot\sqrt[3]{2}\right)$ 8. Intervals where the function is concave down: $\left(2\cdot\sqrt[3]{2},4\right)$ 9. Points of inflection: $P\left(2\cdot\sqrt[3]{2},2.5198\right)$
43d0031e-c751-4a2e-89b6-68e8cbc45eee
sequences_series
false
null
Find $\lim_{x \to 0}\frac{ 2 \cdot \left(\tan(x)-\sin(x)\right)-x^3 }{ x^5 }$, using the expansion of the function in the Maclaurin series.
$\lim_{x \to 0}\frac{ 2 \cdot \left(\tan(x)-\sin(x)\right)-x^3 }{ x^5 }$ = $\frac{1}{4}$
43f3644e-64db-4bac-bd39-fa50622f3e9c
sequences_series
false
null
Find the 5th order Taylor polynomial $P_{5}$ (in powers of $x$) for the function $f(x) = e^x \cdot \sin(x)$.
$P_{5}(x)$ = $x+x^2+\frac{1}{3}\cdot x^3-\frac{1}{30}\cdot x^5$
44151f67-d055-41b9-a33e-677471a36551
differential_calc
false
null
For the function $f(x) = -\frac{ 3 }{ 2 } \cdot x^4 + 2 \cdot x^3 + 3 \cdot x^2 - 6 \cdot x + \frac{ 1 }{ 2 }$, specify the points where local maxima and minima of $f(x)$ occur. 1. The point(s) where local maxima occur 2. The point(s) where local minima occur
1. The point(s) where local maxima occur: $P(-1,6)$ 2. The point(s) where local minima occur: None
4464c80e-9661-4b58-b9a1-744d565b7ea2
multivariable_calculus
true

The values of the function $f$ on rectangle $R$ $[0,2] \times [7,9]$ are given in the table. Estimate the double integral $\int \int f(x,y) \, dx \, dy$ by using a Riemann sum with $m=2$, $n=2$. Select the sample points to be the upper right corners of the subsquares in $R$.
$\int \int f(x,y) \, dx \, dy$ is approximately: $35.42$
4495f45d-c9a9-468c-87c3-cb3701fe37a1
differential_calc
true

Use the graph of $f(x)$ shown below to find $\lim_{x \to -2}f(x)$, if it exists.
$\lim_{x \to -2}f(x)$ is None
453b6199-ab94-487a-b46d-44885715e8be
multivariable_calculus
false
null
Apply the gradient descent algorithm to the function $g(x,y) = \left(x^2-1\right) \cdot \left(x^2-3 \cdot x+1\right)+y^2$ with step size $\frac{ 1 }{ 5 }$ and initial guess $p_{0} = \left\langle -1,0 \right\rangle$ for three steps (so steps $p_{1}$, $p_{2}$, and $p_{3}$).
| $i$ | $1$ | $2$ | $3$ | | --- | --- | --- | --- | | $p_{i}$ | $\left\langle1,0\right\rangle$ | $\left\langle\frac{7}{5},0\right\rangle$ | $\left\langle\frac{1333}{625},0\right\rangle$ | | $g\left(p_{i}\right)$ | $0$ | $-\frac{744}{625}$ | $-\frac{460\ 046\ 957\ 304}{152\ 587\ 890\ 625}$ |
45844f47-7807-4d44-903a-819bbfd75778
integral_calc
true

The graph of $y=\int_{0}^x{f(t) d t}$ where $f$ is a piecewise constant function, is shown here: 1. Determine: 1. Over which intervals is $f$ positive? 2. Over which intervals is $f$ negative? 3. Over which intervals, if any, is $f$ equal to zero? 2. What are the maximum value of $f$? 3. What are the minimum value of $f$? 4. What is the average value of $f$?
1. Intervals when function: 1. is positive: $(0,1)$, $(3,4)$ 2. is negative: $(1,3)$, $(5,6)$ 3. equal to zero: $(4,5)$ 2. The maximum value of $f$: $3$ 3. The minimum value of $f$: $-2$ 4. The average value of $f$: $\frac{1}{3}$
45a1d7b5-f624-4a83-b813-aa80b29cd088
algebra
false
null
Construct a polynomial $p(x)$ of least degree possible such that its zeros are $-2$, $\frac{ 1 }{ 2 }$ (each with multiplicity $2$), and $p(-3) = 5$.
$p(x)$ = $\frac{20}{49}\cdot(x+2)^2\cdot\left(x-\frac{1}{2}\right)^2$
45dc5791-4737-45d6-b1b2-81e807134f2f
sequences_series
true

Find the total length of the dashed path in the following figure:
$L$ = $\frac{3}{2}$
4608d6c8-00c7-42e7-ad2a-9b3ef61eece1
differential_calc
false
null
Find $y'$ and $y''$ for $x^2 + 6 \cdot x \cdot y - 2 \cdot y^2 = 3$.
$y'$ = $\frac{x+3\cdot y}{2\cdot y-3\cdot x}$ $y''$ = $\frac{11\cdot\left(x^2+6\cdot x\cdot y-2\cdot y^2\right)}{(3\cdot x-2\cdot y)^3}$
46efe3d6-df69-43e8-a52b-d85c524aab17
integral_calc
false
null
Compute the integral: $$ \int \frac{ -1 }{ \sqrt[3]{\tan\left(\frac{ x }{ 2 }\right)} } \, dx $$
$\int \frac{ -1 }{ \sqrt[3]{\tan\left(\frac{ x }{ 2 }\right)} } \, dx$ = $C+\frac{1}{2}\cdot\ln\left(\left|1+\sqrt[3]{\tan\left(\frac{1}{2}\cdot x\right)}\cdot\tan\left(\frac{1}{2}\cdot x\right)-\sqrt[3]{\tan\left(\frac{x}{2}\right)^2}\right|\right)-\sqrt{3}\cdot\arctan\left(\frac{1}{\sqrt{3}}\cdot\left(2\cdot\sqrt[3]{\tan\left(\frac{x}{2}\right)^2}-1\right)\right)-\ln\left(1+\sqrt[3]{\tan\left(\frac{x}{2}\right)^2}\right)$
475726a1-1caa-4fce-9a01-413a63f721d8
sequences_series
false
null
Find the sum of the series $\sum_{n=1}^\infty \frac{ x^{4 \cdot n-1} }{ 4 \cdot n-1 }$ using the integration of series.
The sum of the series is $\frac{1}{4}\cdot\ln\left(\frac{|x+1|}{|x-1|}\right)-\frac{1}{2}\cdot\arctan(x)$
476fbe1a-47b2-4905-a5c9-c8f15fec9af0
differential_calc
true

Given $k(x) = \frac{ f(x) }{ g(x) }$, find $k'(1)$ using the table below:
$k'(1)$ = $-2$
478c9874-1edb-498e-9111-048a658a240e
precalculus_review
false
null
Find the center of symmetry of the curve of $f(x) = \frac{ x^2 + 2 \cdot x - 1 }{ 1 - x }$.
The final answer: $(1,-4)$
47a11349-0386-4969-9263-d3cdfcc98cb9
integral_calc
false
null
Evaluate the integral: $$ I = \int \left(x^3 + 3\right) \cdot \cos(2 \cdot x) \, dx $$
The final answer: $\frac{1}{256}\cdot\left(384\cdot\sin(2\cdot x)+128\cdot x^3\cdot\sin(2\cdot x)+192\cdot x^2\cdot\cos(2\cdot x)-96\cdot\cos(2\cdot x)-256\cdot C-192\cdot x\cdot\sin(2\cdot x)\right)$
47c69ab5-9be0-4cef-8f3c-dd7fc78de350
differential_calc
false
null
Given the function $y = \frac{ x^3 + x }{ x^4 - x^2 + 1 }$, identify the maxima and/or minima by using the Second Derivative Test.
Maxima: $P(1,2)$ Minima: $P(-1,-2)$
47dbe135-6e32-462c-a77d-8581fe5ed596
algebra
false
null
The radius of the right circular cylinder is $\frac{ 1 }{ 3 }$ meter greater than the height. The volume is $\frac{ 98 \cdot \pi }{ 9 }$ cubic meters. Find the dimensions.
$r$: $\frac{7}{3}$ $h$: $2$
47fadf54-e0ee-45c5-8da1-4791534583a0
differential_calc
true

Given the graph of $f(x)$ shown to the right, write the limit statement to describe the function's behavior as $x$ approaches $3$ from the left.
$\lim_{{x \to 3^-}} f(x) = $\lim_{x\to3^-}f(x)=-5$$
481d4a88-aaae-4cae-8e98-29ee8182edbc
precalculus_review
false
null
Solve the following inequality: $$ \left| |x+3| + |x-2| \right| \le 5 $$ By using rules of the absolute value function.
The final answer: $[-3,2]$
4872f755-05b7-49f4-859b-c56ded668225
precalculus_review
true

Find a formula for $f(x)$, the sinusoidal function whose graph is shown below:
The final answer: $f(x)=-4\cdot\cos\left(\frac{1}{2}\cdot\left(x-\frac{\pi}{4}\right)\right)+4$
4881a8a3-a6ab-40be-aa32-3b272f2dc704
integral_calc
false
null
Compute the integral: $$ \int \frac{ -3 \cdot \tan(4 \cdot x) }{ \sqrt{\sin(4 \cdot x)^4+\cos(4 \cdot x)^4} } \, dx $$
$\int \frac{ -3 \cdot \tan(4 \cdot x) }{ \sqrt{\sin(4 \cdot x)^4+\cos(4 \cdot x)^4} } \, dx$ = $C-\frac{3}{8}\cdot\ln\left(\sqrt{1+\tan(4\cdot x)^4}+\tan(4\cdot x)^2\right)$
489ae381-47d0-4a7b-bce0-f7974248806b
precalculus_review
false
null
Transform $z = -3 + i$ to a trigonometric form.
The final answer: $z=\sqrt{10}\cdot\left(\cos\left(\arccos\left(-\frac{3}{\sqrt{10}}\right)\right)+i\cdot\sin\left(\arccos\left(-\frac{3}{\sqrt{10}}\right)\right)\right)$
490352f2-8fc0-4790-86a9-ff74e119f7b7
algebra
false
null
Solve the following equations: 1. $\frac{ 3 }{ 4 } (8 x+12)=21$ 2. $\frac{ 1 }{ 2 } (8 r+10)=17$ 3. $\frac{ 5 x }{ 8 }+9=4$ 4. $\frac{ 5 }{ 9 } x-\frac{ 4 }{ 3 }=\frac{ 7 }{ 9 }$ 5. $2\frac{2}{3} p+3 \left(\frac{ 2 }{ 3 } p-8\right)=-10$ 6. $-5\frac{1}{4} u+2 \left(\frac{ 3 }{ 8 } u-9\right)=\frac{ 5 }{ 2 }$
The solutions to the given equations are: 1. $x=2$ 2. $r=3$ 3. $x=-8$ 4. $x=\frac{ 19 }{ 5 }$ 5. $p=3$ 6. $u=-\frac{ 41 }{ 9 }$
49102ccc-ebb1-432a-b82a-0c7d6913d946
sequences_series
false
null
Expand function $y = \sin\left(\frac{ \pi \cdot x }{ 4 }\right)$ in Taylor series at $x = 2$, given that $\cos(x) = \sum_{n=0}^\infty \left((-1)^n \cdot \frac{ x^{2 \cdot n} }{ (2 \cdot n)! }\right)$.
The final answer: $\sum_{n=0}^\infty\left((-1)^n\cdot\frac{\left(\frac{\pi}{4}\cdot(x-2)\right)^{2\cdot n}}{(2\cdot n)!}\right)$
4947b302-5fc0-437c-b39e-7235e8c4307d
precalculus_review
false
null
$P = \left(x, \frac{ \sqrt{7} }{ 3 }\right)$, $x<0$ is a point on the unit circle. 1. Find the (exact) missing coordinate value of the point. 2. Find the values of the six trigonometric functions for the angle $\theta$ with a terminal side that passes through point $P$. Rationalize denominators.
1. The (exact) missing coordinate value of the point is: $-\frac{\sqrt{2}}{3}$ 2. The values of the six trigonometric functions is: * $\sin\left(\theta\right)$ = $\frac{\sqrt{7}}{3}$ * $\cos\left(\theta\right)$ = $-\frac{\sqrt{2}}{3}$ * $\tan\left(\theta\right)$ = $-\frac{\sqrt{14}}{2}$ * $\csc\left(\theta\right)$ = $\frac{3\cdot\sqrt{7}}{7}$ * $\sec\left(\theta\right)$ = $-\frac{3\cdot\sqrt{2}}{2}$ * $\cot\left(\theta\right)$ = $-\frac{\sqrt{14}}{7}$
49b9c6d5-e705-4fd6-ae01-f4731cbf0fa5
integral_calc
false
null
Solve the integral: $$ \int \frac{ \sin(x)^5 }{ \cos(x)^4 } \, dx $$
$\int \frac{ \sin(x)^5 }{ \cos(x)^4 } \, dx$ = $C+\frac{2}{\cos(x)}+\frac{1}{3\cdot\left(\cos(x)\right)^3}+\cos(x)$
49e7bb62-d218-413a-a026-fb3d83dd990a
algebra
false
null
Divide rational expressions and simplify it: $$ \frac{ x^2-4 }{ 2 } \div \frac{ x+2 }{ 3 } $$
The final answer: $\frac{3}{2}\cdot x-3$
4a693b69-d42b-4359-a183-f84c09f12bb0
integral_calc
true

Bore a hole of radius $a$ down the axis of a right cone and through the base of radius $b$ as seen here. Find the volume of this solid.
Volume = $\frac{\pi\cdot b}{3}\cdot\left(b^2-3\cdot a^2\right)$
4ae78dde-37d1-48f7-a6a5-480cb979092b
precalculus_review
false
null
Simplify $E = \left(\sin(2 \cdot a)\right)^3 \cdot \left(\cos(6 \cdot a)\right) + \left(\cos(2 \cdot a)\right)^3 \cdot \left(\sin(6 \cdot a)\right)$.
The final answer: $E=\frac{3}{4}\cdot\sin(8\cdot a)$
4afe68d6-980e-4422-a4cb-58f6988fee7a
integral_calc
false
null
Compute the integral: $$ 8 \cdot \int \cot(-4 \cdot x)^5 \cdot \csc(4 \cdot x)^4 \, dx $$
$8 \cdot \int \cot(-4 \cdot x)^5 \cdot \csc(4 \cdot x)^4 \, dx$ = $C+\frac{1}{3}\cdot\left(\cot(4\cdot x)\right)^6+\frac{1}{4}\cdot\left(\cot(4\cdot x)\right)^8$
4b450811-e985-4a9a-981d-b5f7ab763312
multivariable_calculus
false
null
Find vector $\vec{c} \times \left(\vec{a}+3 \cdot \vec{b}\right)$ where $$ \vec{a}=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 0 & 9 \\ 0 & 1 & 0 \end{vmatrix}, \quad \vec{b}=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & -1 & 1 \\ 7 & 1 & -1 \end{vmatrix}, \quad \text{and} \quad \vec{c}=\vec{i}-\vec{k} $$
$\vec{c} \times \left(\vec{a}+3 \cdot \vec{b}\right)$ = $21\cdot\vec{i}-17\cdot\vec{j}+21\cdot\vec{k}$
4b815f84-4919-4db1-9328-5412d4a3e0ea
precalculus_review
false
null
Solve $\left(\sin(x)\right)^2 + \left(\cos(3 \cdot x)\right)^2 = 1$.
The final answer: $x=\frac{n\cdot\pi}{4}$
4bd1631f-c515-4d4c-a71e-7d68591a7814
differential_calc
true

Examine the graph. Identify where the vertical asymptotes are located.
$x$ = $0$, $1$, $2$
4c1292e1-d4b3-4acf-afaf-eaac62f2662d
integral_calc
false
null
Compute the integral: $$ \int \frac{ -1 }{ x^2 \cdot \left(3+x^3\right)^{\frac{ 5 }{ 3 }} } \, dx $$
$\int \frac{ -1 }{ x^2 \cdot \left(3+x^3\right)^{\frac{ 5 }{ 3 }} } \, dx$ = $C+\frac{1}{9}\cdot\sqrt[3]{1+\frac{3}{x^3}}+\frac{1}{18\cdot\left(1+\frac{3}{x^3}\right)^{\frac{2}{3}}}$
4c30d87c-c696-465b-a078-ec3b61d444a8
multivariable_calculus
false
null
Change the order of integration by integrating first with respect to $z$, then $x$, then $y$: $$ \int_{0}^1 \int_{1}^2 \int_{2}^3 \left( x^2 + \ln(y) + z \right) \, dx \, dy \, dz $$
$I$ = $2\cdot\ln(2)+\frac{35}{6}$
4c9566d0-2bc4-4a11-b0ca-36e6a42c2622
algebra
false
null
Rewrite the quadratic expression $x^2 + \frac{ 2 }{ 5 } \cdot x - \frac{ 1 }{ 5 }$ by completing the square.
$x^2 + \frac{ 2 }{ 5 } \cdot x - \frac{ 1 }{ 5 }$ = $\left(x+\frac{1}{5}\right)^2-\frac{6}{25}$
4cd052e9-254c-4c7a-9c30-cbbb888769c0
multivariable_calculus
false
null
Compute the second order derivative $\frac{d ^2y}{ d x^2}$ for the parametrically defined function $$ x = \frac{ 1 }{ 2 } \cdot \left(\cos(t)\right)^3, \quad y = 6 \cdot \left(\sin(t)\right)^3 $$
$\frac{d ^2y}{ d x^2}$ = $\frac{8}{\left(\cos(t)\right)^4\cdot\sin(t)}$
4d41436f-c675-45ef-87a1-009350e3953b
precalculus_review
false
null
Evaluate the definite integral. Express answer in exact form whenever possible: $$ \int_{0}^\pi \left(\cos(99 \cdot x) \cdot \sin(101 \cdot x)\right) \, dx $$
$\int_{0}^\pi \left(\cos(99 \cdot x) \cdot \sin(101 \cdot x)\right) \, dx$ = $0$
4d4989ec-b4b8-4b1b-b20c-0861da90c835
algebra
true

Using the given graphs of $f(x)$ and $g(x)$, find $f\left(g(3)\right)$.
$f\left(g(3)\right)$ = $0$
4d8dcf18-41d7-4085-97ab-f076a076978e
precalculus_review
false
null
Calculate the following indefinite integral: $$ \int x \cdot \left(a^x\right)^x \, dx $$ for $a > 0$ and $a \ne 1$.
$\int x \cdot \left(a^x\right)^x \, dx$ = $\frac{a^{x^2}}{2\cdot\ln(a)}+C$
4df2e972-39b8-4bc5-8726-98ce26fea8f8
differential_calc
false
null
Find the local extrema of the function $f(x) = 2 \cdot \left(x^2\right)^{\frac{ 1 }{ 3 }} - x^2$ using the First Derivative Test.
Local maxima: $x=-\sqrt[4]{\frac{8}{27}}$, $x=\sqrt[4]{\frac{8}{27}}$ Local minima: $x=0$
4e00e130-7fca-4c2a-8d84-cdd7d0405967
algebra
false
null
Solve the equation for $x$: $12 - 5 \cdot (x + 3) = 2 \cdot x - 5$
The final answer: $x=\frac{2}{7}$
4e3604b8-d25e-467e-bb05-b739b155a1e8
integral_calc
false
null
Compute the integral: $$ \int \frac{ x-\sqrt[3]{x^2}-\sqrt[6]{x} }{ x \cdot \left(4+\sqrt[3]{x}\right) } \, dx $$
$\int \frac{ x-\sqrt[3]{x^2}-\sqrt[6]{x} }{ x \cdot \left(4+\sqrt[3]{x}\right) } \, dx$ = $C+\frac{3}{2}\cdot\sqrt[3]{x^2}+60\cdot\ln\left(\left|4+\sqrt[3]{x}\right|\right)-3\cdot\arctan\left(\frac{1}{2}\cdot\sqrt[6]{x}\right)-15\cdot\sqrt[3]{x}$
4e4e997a-4e1e-4694-96ec-bffc19506e79
algebra
false
null
Using the Rational Zero Theorem, list all possible rational zeros of the following polynomial: $p(x) = 2 \cdot x^3 + x - 1$
Possible rational zeros are $1$, $-1$, $\frac{1}{2}$, $-\frac{1}{2}$
4e68083d-84c3-4070-9ae7-06b59dcb7717
integral_calc
true

Let $R$ be the region enclosed by the graphs of $y=\frac{ 1 }{ 2 } \cdot x^2$ and $y=x$, as shown in the image above. Region $R$ is the base of a solid. For this solid, each cross section perpendicular to the $y$-axis is an isosceles right triangle with a leg in $R$. Find the volume of the solid.
The volume of the solid is $\frac{2}{15}$ units³.
4ec04fb6-2b14-47de-8edd-ab602686736d
integral_calc
true

The graph of $g'(x)$, the derivative of $g$, is shown above. Find the value of $g(6)$ if $g(0)=-2$.
$g(6)$ = $8$
4ec668c6-0576-46de-a1b8-2bd85c15805a
multivariable_calculus
true

Find the volume of the solid under the graph of the function $f(x,y) = x \cdot y + 1$ and above the region in the figure:
The volume is $\frac{7+2\cdot\pi}{4}$
4edfa960-3d41-4fa9-88f9-e850ed2af94b
sequences_series
false
null
Find the radius of convergence of the series: $$ \sum_{n=1}^\infty \left(\left(\frac{ n-1 }{ 2 \cdot n+3 }\right)^n \cdot x^n\right) $$
$R$ = $2$
4f311636-5a26-454b-a708-5f7ab2aeccbc
precalculus_review
false
null
Solve the following system of equations: 1. $\sin(x) \cdot \sin(y) = \frac{ \sqrt{3} }{ 4 }$ 2. $\cos(x) \cdot \cos(y) = \frac{ \sqrt{3} }{ 4 }$
The final answer: $x=\frac{\pi}{3}+\frac{\pi}{2}\cdot(2\cdot n+k)$, $x=\frac{\pi}{6}+\frac{\pi}{2}\cdot(2\cdot n+k)$, $y=\frac{\pi}{6}+\frac{\pi}{2}\cdot(k-2\cdot n)$, $y=\frac{\pi}{3}+\frac{\pi}{2}\cdot(k-2\cdot n)$
4f622685-24ee-4e55-a33b-6270bb8204e5
precalculus_review
false
null
Solve $x^2 - 4 \cdot x - 6 = \sqrt{2 \cdot x^2 - 8 \cdot x + 12}$.
The final answer: $x=-2 \lor x=6$
4fabf73c-c71a-486d-a161-716b6ec6fd31
precalculus_review
false
null
Calculate the following integral: $$ \int \log_{a^x}(b) \, dx $$ for $a > 0$, $b > 0$, $a \ne 1$, $b \ne 1$, $x \ne 0$.
$\int \log_{a^x}(b) \, dx$ = $\frac{\ln(x)\cdot\ln(b)}{\ln(a)}+C$
4faec218-e81d-4743-8372-242b474f1a9b
sequences_series
false
null
Suppose that we have a series: $1-\frac{ 1 }{ 2 }+\frac{ 1 }{ 3 }-\cdots+(-1)^{n+1} \cdot \frac{ 1 }{ n }+\cdots$ and its sum is equal to $\ln(2)$. Find the sum of the series: $1-\frac{ 1 }{ 2 }-\frac{ 1 }{ 4 }+\frac{ 1 }{ 3 }-\frac{ 1 }{ 6 }-\frac{ 1 }{ 8 }+\frac{ 1 }{ 5 }-\frac{ 1 }{ 10 }-\frac{ 1 }{ 12 }+\cdots$.
The final answer: $S=\frac{1}{2}\cdot\ln(2)$
4fbf3770-e3dd-4d3d-87ac-825d1fa83719
integral_calc
false
null
Compute the integral: $$ 3 \cdot \int \left(\cos\left(\frac{ x }{ 6 }\right)\right)^6 \, dx $$
$3 \cdot \int{\left(\cos\left(\frac{ x }{ 6 }\right)\right)^6 d x}$ = $C+\frac{9}{2}\cdot\sin\left(\frac{x}{3}\right)+\frac{15}{16}\cdot x+\frac{27}{32}\cdot\sin\left(\frac{2\cdot x}{3}\right)-\frac{3}{8}\cdot\left(\sin\left(\frac{x}{3}\right)\right)^3$
509c8613-037d-4553-b210-f89cd8434288
differential_calc
true

The graphs of the continuous functions $f$ and $g$ are shown. Let $h(x) = -5 \cdot f(x) - g(x) + 3 \cdot x^2$. Find $h'(2)$.
$h'(2)$ = $15$
50a65ac5-fd17-452d-a81f-fc9ce7492fe9
differential_calc
false
null
Evaluate $\lim_{x \to 0^{+}} \left( \left( \frac{ \tan(4 \cdot x) }{ 4 \cdot x } \right)^{\frac{ 1 }{ 2 \cdot x^2 }} \right)$ using L'Hopital's Rule.
$\lim_{x \to 0^{+}} \left( \left( \frac{ \tan(4 \cdot x) }{ 4 \cdot x } \right)^{\frac{ 1 }{ 2 \cdot x^2 }} \right)$ = $e^{\frac{8}{3}}$
50b3292a-5159-410f-811e-6cefeab6f78a
precalculus_review
false
null
Given $k$ as an integer and $a \ne \pi \cdot k$, evaluate $P=\cos(a) \cdot \cos(2 \cdot a) \cdot \cos(4 \cdot a) \ldots \cos\left(2^n \cdot a\right)$.
The final answer: $P=\frac{1}{2^{n+1}}\cdot\frac{\sin\left(2^{n+1}\cdot a\right)}{\sin(a)}$
50c99276-f6a4-4769-86d3-1c5338bb62b1
algebra
false
null
Multiply the rational expressions and express the product in simplest form: $$ \frac{ 2 \cdot d^2+9 \cdot d-35 }{ d^2+10 \cdot d+21 } \cdot \frac{ 3 \cdot d^2+2 \cdot d-21 }{ 3 \cdot d^2+14 \cdot d-49 } $$
The final answer: $\frac{2\cdot d-5}{d+7}$
50f9b4f4-fe8f-40e1-8b8c-56f2c06fd385
integral_calc
false
null
Solve the integral: $$ \int \left(\frac{ x+6 }{ x-6 } \right)^{\frac{ 3 }{ 2 }} \, dx $$
$\int \left(\frac{ x+6 }{ x-6 } \right)^{\frac{ 3 }{ 2 }} \, dx$ = $C+\sqrt{\frac{x+6}{x-6}}\cdot(x-30)-18\cdot\ln\left(\left|\frac{\sqrt{x-6}-\sqrt{x+6}}{\sqrt{x-6}+\sqrt{x+6}}\right|\right)$
510a0ac3-d3f3-40e2-9d7a-8f0f487490c8
sequences_series
false
null
Find the radius of convergence of the series: $$ \sum_{n=1}^\infty \left( \left(n^{\frac{ 1 }{ n }}-1\right)^n \cdot x^n \right) $$
$R$ = $\infty$
51106f64-d305-4db0-b14f-2d0ec24181d3
integral_calc
true

Consider the cycloid given by the parametric equations $x = 2 \cdot \left(t - \sin(t)\right)$, $y = 2 \cdot \left(1 - \cos(t)\right)$. Find the area of the surface obtained by rotating the arc of the cycloid OBA about the segment DE.
The final answer: $\frac{64\cdot\pi}{3}$
517c1de0-1f6b-4762-8073-04faf90d2df8
integral_calc
true

A car is speeding up and its velocity is recorded in the following table. Use the table to estimate the total distance traveled, giving an * upper estimate, and * lower estimate.
The final answer: $44$, $66$
51860641-1b22-460b-9fd9-5e074f620c93
precalculus_review
false
null
Solve the differential equation: $\frac{ d y }{d x} = \sin(x)^2$. The curve passes through the point $(0,0)$.
$f(x)$ = $\frac{x}{2}-\frac{\sin(2\cdot x)}{4}$
51dae41a-dc02-4794-8d1a-c0cc2838d16d
multivariable_calculus
false
null
A small appliances company makes toaster ovens and pizza cookers, and have noticed their customer base's purchasing habits give them the price-demand equations given below, where $p$ is the price and $x$ is the quantity of toaster ovens, $q$ is the price and $y$ is the quantity of pizza cookers. The Cost function is $C(x,y) = 160 + 12 \cdot x + 24 \cdot y$. $p = 50 - 4 \cdot x + y$ and $q = 100 + x - 5 \cdot y$ 1. Construct the 2-product Revenue function, $R(x,y)$ 2. Find $R(8,10)$ 3. Construct the 2-product Profit function, $P(x,y)$ 4. Find $P(8,10)$
1. $R(x,y)$ = $R(x,y)=50\cdot x+100\cdot y+2\cdot x\cdot y-4\cdot x^2-5\cdot y^2$ 2. $R(8,10)$ = $804$ 3. $P(x,y)$ = $P(x,y)=38\cdot x+76\cdot y+2\cdot x\cdot y-160-4\cdot x^2-5\cdot y^2$ 4. $P(8,10)$ = $308$
51f91d21-b2e5-408b-b549-aaec8249f58b
multivariable_calculus
true

The region $D$ is shown in the following figure. Evaluate the double integral $\int\int_{D}{\left(x^2+y\right) d A}$ by using the easier order of integration.
$\int\int_{D}{\left(x^2+y\right) d A}$ = $\frac{256}{15}$
526a43b4-e38a-43d7-8930-47b626fbf7ef
precalculus_review
false
null
1. Find the inverse function of $f(x) = \sqrt{x-1}$ 2. Find the domain of the inverse function 3. Find the range of the inverse function
1. The inverse function is: $x^2+1$ 2. The domain of the inverse function is: $x\ge0$ 3. The range of the inverse function is: $y\ge1$
52ba9ace-9cce-481d-bc05-13c2eb4d5460
differential_calc
false
null
Find the derivative of the function $y = \frac{ 3 \cdot \csc(x) - 4 \cdot \sin(x) }{ 8 \cdot \left(\cos(x)\right)^5 } - \frac{ 76 }{ 5 } \cdot \cot(3 \cdot x)$.
$y'$ = $\frac{228}{5\cdot\left(\sin(3\cdot x)\right)^2}+\frac{16\cdot\left(\cos(x)\right)^6-5\cdot\left(\cos(x)\right)^4-3\cdot\left(\cos(x)\right)^6\cdot\left(\csc(x)\right)^2}{8\cdot\left(\cos(x)\right)^{10}}$
52dac142-fce4-4cac-8d4c-02d6f91936b9
sequences_series
false
null
Find the Fourier series of the function $f(x) = \frac{ 1 }{ 4 } \cdot x$ in the interval $[-3,3]$.
The Fourier series is: $\sum_{n=1}^\infty\left(\frac{\frac{3}{2}\cdot(-1)^{n+1}}{\pi\cdot n}\cdot\sin\left(\frac{\pi\cdot n\cdot x}{3}\right)\right)$
531fbc44-4d03-459d-bc47-0dd40bf62702
integral_calc
false
null
Find the area bounded by the curves $y = 3 \cdot x + 3$, $y = 3 \cdot \cos(x)$, and $y = 0$.
Area: $\frac{9}{2}$
5381ca65-50cc-430f-b450-b4e00e2e6040
integral_calc
false
null
Compute the integral: $$ \int \frac{ 1 }{ \left(\cos(5 \cdot x)\right)^3 } \, dx $$
$\int \frac{ 1 }{ \left(\cos(5 \cdot x)\right)^3 } \, dx$ = $C+\frac{\sin(5\cdot x)}{10\cdot\left(\cos(5\cdot x)\right)^2}+\frac{1}{10}\cdot\ln\left(\left|\tan\left(\left(\frac{5}{2}\right)\cdot x+\frac{\pi}{4}\right)\right|\right)$
541e5d98-324c-43bf-b2f7-56b3fdec55f0
sequences_series
false
null
Find the domain of convergence of the series $\sum_{n=1}^\infty \left(\frac{ x^n }{ n \cdot 10^{n-1} }\right)$.
The final answer: $-10\le x<10$
548e5105-3474-4300-9672-0196f2a27c1a
integral_calc
false
null
Compute the integral: $$ 2 \cdot \int \left(\cos\left(\frac{ x }{ 4 }\right)\right)^6 \, dx $$
$2 \cdot \int{\left(\cos\left(\frac{ x }{ 4 }\right)\right)^6 d x}$ = $C+2\cdot\sin\left(\frac{x}{2}\right)+\frac{3}{8}\cdot\sin(x)+\frac{5}{8}\cdot x-\frac{1}{6}\cdot\left(\sin\left(\frac{x}{2}\right)\right)^3$
5491d76d-661b-40b8-8192-b4c98c1dd5b6
differential_calc
true

Given the graphs of $f(x)$ and $g(x)$ above, find $m'(4)$ where $m(x) = f\left(g(x)\right)$.
$m'(4)$ = $1$
54b9cf44-c38c-4ccf-8e90-71e67b980af1
integral_calc
true

Find the area of the surface formed by rotating the loop of the parametric curve $x = t^2$, $y = \frac{ t \cdot \left(t^2 - 3\right) }{ 3 }$ between the points $P(0,0)$ and $P(3,0)$ about the x-axis (see the picture below):
The final answer: $3\cdot\pi$
551ab8c6-6717-445e-9eb3-a9b72ff35da6
algebra
false
null
Use synthetic division to find the quotient and remainder. Ensure the equation is in the form required by synthetic division: $$ \frac{ 4 \cdot x^3-12 \cdot x^2-5 \cdot x-1 }{ 2 \cdot x+1 } $$ Hint: divide the dividend and divisor by the coefficient of the linear term in the divisor. Solve on a paper, if it is more convenient for you.
Quotient: $2\cdot x^2-7\cdot x+1$ Remainder: $-2$
5564d511-3879-48af-baed-3005bc3a2261
precalculus_review
false
null
Find the inverse of the function $f(x) = \frac{ 4-2 \cdot \sqrt{x} }{ 4+2 \cdot \sqrt{x} }$.
The final answer: $\frac{4\cdot(1-x)^2}{(x+1)^2}$
557fa740-6516-45d6-a45a-1bfc252ab6e1
sequences_series
false
null
Using the series expansion for the function $(1+x)^m$, calculate approximately $\sqrt[4]{15}$ with an accuracy of 0.0001.
The final answer: $1.968$
558c9ebf-be00-40bc-a0cd-e1a4432bac21
precalculus_review
true

The graph of a function $f$ is given in the figure below: 1. What is the value or limit of $f(x)$ as $x$->$\infty$? 2. What is the value or limit of $x$->$b^{+}$? 3. What are the vertical asymptotes? (Enter as x=_) 4. What are the horizontal asymptotes? (Enter as y=_) 5. Give the value (letter), if any, at which the graph of $f$ has a vertical tangent. 6. Give the value (letter), if any, at which the graph of $f$ has a vertical cusp.
1. As $x$->$\infty$, $f(x)$->$d$ 2. As $x$->$b^{+}$, $f(x)$->$c$ 3. Vertical asymptotes at $x=a$ 4. Horizontal asymptotes with $y=d$ 5. $f$ has a vertical tangent at $x=p$ 6. $f$ has a vertical cusp at $x=q$
5597a385-33cd-41a2-b5ad-dbc9390e795c
differential_calc
false
null
What are the points of inflection of the graph of $f(x) = \frac{ x+1 }{ x^2+1 }$?
The final answer: $x_1=1 \land x_2=-2+\sqrt{3} \land x_3=-2-\sqrt{3}$
55c912d9-77af-430d-8bc8-fde2929769da
differential_calc
false
null
Find the local minimum and local maximum values of the function $f(x) = \frac{ x^4 }{ 2 } - \frac{ 20 }{ 3 } \cdot x^3 + 24 \cdot x^2 + 13$.
The point(s) where the function has a local minimum: $P(0,13)$, $P(6,85)$ The point(s) where the function has a local maximum: $P\left(4,\frac{295}{3}\right)$
55dc25d0-d0df-47f6-ac8a-f4f29087033a
integral_calc
true

Compute the area enclosed by the curve $y = x^2 - 3 \cdot x$, the line $x = -4$, and the $x$-axis as shown below:
Area = $\frac{299}{6}$
568e4b30-a796-49d7-aaf8-5ca4d6418607
differential_calc
false
null
Evaluate $\lim_{x \to 0}\left(\left(\frac{ \sin(4 \cdot x) }{ 4 \cdot x }\right)^{\frac{ 1 }{ 3 \cdot x^2 }}\right)$.
$\lim_{x \to 0}\left(\left(\frac{ \sin(4 \cdot x) }{ 4 \cdot x }\right)^{\frac{ 1 }{ 3 \cdot x^2 }}\right)$ = $e^{-\frac{8}{9}}$
56f22d87-6f2d-41cd-a939-1a15194856dc
multivariable_calculus
false
null
Find partial derivatives of the function $r = \sqrt{a \cdot x^2 - b \cdot y^2}$.
$\frac{\partial}{\partial x}(r)$ = $\frac{a\cdot x}{\sqrt{a\cdot x^2-b\cdot y^2}}$ $\frac{\partial}{\partial a}(r)$ = $\frac{x^2}{2\cdot\sqrt{a\cdot x^2-b\cdot y^2}}$ $\frac{\partial}{\partial y}(r)$ = $-\frac{b\cdot y}{\sqrt{a\cdot x^2-b\cdot y^2}}$ $\frac{\partial}{\partial b}(r)$ = $-\frac{y^2}{2\cdot\sqrt{a\cdot x^2-b\cdot y^2}}$
570d1fef-3e41-428e-af8f-0eb4802e9667
integral_calc
true

Split the region between the two curves $y = x^3$ and $y = x^2 + x$ into two smaller regions, then determine the area by integrating over the $x$-axis. Note that you will have two integrals to solve.
Area = $\frac{13}{12}$
575785fa-191f-4c8c-bb7c-9ca9c825b568
sequences_series
false
null
Find the Fourier series of the function $f(x) = \frac{ -1 }{ 3 } \cdot x$ in the interval $[-3,3]$.
The Fourier series is: $\sum_{n=1}^\infty\left(\frac{2\cdot(-1)^n}{\pi\cdot n}\cdot\sin\left(\frac{\pi\cdot n\cdot x}{3}\right)\right)$
57a3be6d-92a6-4afd-9f1e-c15fc64195dc
algebra
false
null
Solve the following equations: 1. $2 m - 8 = -28$ 2. $\frac{ x }{ 9 } - 3 = 8$ 3. $12 m + 20 = -40$ 4. $-\frac{ x }{ 3 } + 5 = 21$ 5. $8 r - 27 = -19$ 6. $6 + \frac{ k }{ 3 } = 33$ 7. $15 = -4 y - 9$ 8. $8 w + 4 = -36$
The solutions to the given equations are: 1. $m=-10$ 2. $x=99$ 3. $m=-5$ 4. $x=-48$ 5. $r=1$ 6. $k=81$ 7. $y=-6$ 8. $w=-5$
57b00837-b0bf-47f4-b0ce-76f29fbd9c0f
precalculus_review
false
null
Solve the following inequality by using rules of the absolute value function. Express your answer as an interval or union of intervals. $\left| |x+3| + |x-2| \right| \le 9$
The final answer: $[-5,4]$
57f16359-5178-4dc3-9c70-6dc3b425a540
sequences_series
false
null
Find the Fourier series of the function $u = \left| \frac{ \sin\left( \frac{ x }{ 2 } \right) }{ 2 } \right|$ in the interval $[-\pi, \pi]$.
The Fourier series is: $\frac{1}{\pi}-\frac{2}{\pi}\cdot\sum_{n=1}^\infty\left(\frac{1}{\left(4\cdot n^2-1\right)}\cdot\cos(n\cdot x)\right)$
5876988d-f7b7-4106-aae1-88d2bd872ed3
differential_calc
false
null
Find the derivative of the 25th order $y^{(25)}$ for a function $y = 2 \cdot x^2 \cdot \sin(x)$.
$y^{(25)}$ = $\left(2\cdot x^2-1200\right)\cdot\cos(x)+100\cdot x\cdot\sin(x)$
58a92fd4-6288-4849-8902-9d02c154e0c2
differential_calc
false
null
Find the second derivative $\frac{d ^2y}{ d x^2}$ of the function $x = 5 \cdot \left(\cos(t)\right)^3$, $y = 6 \cdot \left(\sin(3 \cdot t)\right)^3$.
$\frac{d ^2y}{ d x^2}$ = $\frac{-15\cdot\left(\cos(t)\right)^2\cdot\sin(t)\cdot\left(324\cdot\sin(3\cdot t)-486\cdot\left(\sin(3\cdot t)\right)^3\right)-\left(30\cdot\cos(t)-45\cdot\left(\cos(t)\right)^3\right)\cdot54\cdot\left(\sin(3\cdot t)\right)^2\cdot\cos(3\cdot t)}{\left(-15\cdot\left(\cos(t)\right)^2\cdot\sin(t)\right)^3}$
58e2d06c-dce7-4705-aa36-ca5e519312ac
algebra
false
null
Rewrite the quadratic expression $x^2 - 10 \cdot x + 7$ by completing the square.
$x^2 - 10 \cdot x + 7$ = $(x-5)^2-18$
5903bf68-557c-4045-b8f0-5601f1e040ac
precalculus_review
false
null
Solve $\sin(x) + 7 \cdot \cos(x) + 7 = 0$.
The final answer: $x=2\cdot\pi\cdot k-2\cdot\arctan(7) \lor x=\pi+2\cdot\pi\cdot k$