uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
6e202713-1c80-40df-9e36-7634560c9076
integral_calc
true

The shaded region $R$ is bounded by the graph of $y = \cos(x)$ and the line $y = \frac{ 1 }{ 2 }$, as shown in the figure above. There exists a number $k$, $k > 1$, such that when $R$ is revolved about the horizontal line $y = k$, the resulting solid has the volume $C$. Write, but do not solve, an equation involving an integral expression that can be used to find the value of $k$.
An equation that can be used to find the value of $k$ is $C=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\pi\cdot\left(\left(k-\frac{1}{2}\right)^2-\left(k-\cos(x)\right)^2\right)dx$
6e2f7c2f-40c0-498b-8398-22df34f72ca0
algebra
false
null
What are the intercepts and asymptotes of the function $P(t) = \frac{ 20 }{ 1+4 \cdot e^{-0.5 \cdot t} }$? If there are no asymptotes or intercepts, then write $\text{None}$.
x-intercept: None y-intercept: $P(0,4)$ asymptotes: $y=20$, $y=0$
6e469c97-4911-48e7-af18-f91442686260
multivariable_calculus
false
null
Evaluate the double integral: $$ \int \int \rho^2 \, d \varphi \, d \rho $$ where the integration area $Q$ is bounded by the curve $\rho = a \cdot \sin(2 \cdot \varphi)$.
$\int \int \rho^2 \, d \varphi \, d \rho$ = $\frac{8}{9}\cdot a^3$
6e565a1e-93c4-4477-9a63-92e2c6f2dcf8
integral_calc
true

On a cylinder with a diameter of 6 cm, a channel is cut out along the surface, having an equilateral triangle with a side of 0.25 cm in cross section. Compute the volume of the cut out material.
$V$ = $\frac{24\cdot\sqrt{3}-1}{256}\cdot\pi$
6eab7d06-a894-4b93-8479-b153c4ea7408
precalculus_review
true

Estimate the average rate of change from $x=1$ to $x=4$ for the following function $f(x)$ whose graph is given below: Note that the average rate of change of a function from $x=a$ to $x=b$ is $\frac{ f(b)-f(a) }{ b-a }$.
The final answer: $-0.5$
6eb2112a-d921-461f-bbd8-4e02c7e628ba
sequences_series
false
null
Let $f(x) = \ln\left(2 \cdot x^2 + 1\right)$. 1. Find the 4th order Taylor polynomial $P_{4}(x)$ of $f(x)$ about $a=0$. 2. Compute $\left|f(1) - P_{4}(1)\right|$. 3. Compute $\left|f(0.1) - P_{4}(0.1)\right|$.
1. $2\cdot x^2-2\cdot x^4$ 2. $1.09861229$ 3. $2.62729\cdot10^{-6}$
6eb723e9-f3be-45fb-93d2-513d7ac5c99b
differential_calc
false
null
Sketch the curve: $$ y = \frac{ x^3 }{ 6 \cdot (x+3)^2 } $$ Provide the following: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-1\cdot\infty,-3)\cup(-3,\infty)$ 2. Vertical asymptotes: $x=-3$ 3. Horizontal asymptotes: None 4. Slant asymptotes: $y=\frac{x}{6}-1$ 5. Intervals where the function is increasing: $(-\infty,-9)$, $(-3,0)$, $(0,\infty)$ 6. Intervals where the function is decreasing: $(-9,-3)$ 7. Intervals where the function is concave up: $(-\infty,-9)$, $(-3,0)$, $(0,\infty)$ 8. Intervals where the function is concave down: $(-3,0)$, $(-\infty,-3)$ 9. Points of inflection: $P(0,0)$
6efac4ac-e374-438a-95a1-859cfaa849f7
differential_calc
false
null
Given the function $y = \frac{ 1 }{ 4 - x^2 }$, find the following: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. Domain (in interval notation) $(-1\cdot\infty,-2)\cup(-2,2)\cup(2,\infty)$ 2. Vertical asymptotes $x=2$, $x=-2$ 3. Horizontal asymptotes $y=0$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(0,2)$, $(2,\infty)$ 6. Intervals where the function is decreasing $(-\infty,-2)$, $(-2,0)$ 7. Intervals where the function is concave up $(-2,2)$ 8. Intervals where the function is concave down $(-\infty,-2)$, $(2,\infty)$ 9. Points of inflection None
6f098df0-77ae-4edd-bf05-80600c45367d
sequences_series
false
null
Find the Fourier series expansion of the function $f(x) = \frac{ x }{ 2 }$ with the period $4$ on the interval $[-2,2]$.
The Fourier series is: $f(x)=\sum_{n=1}^\infty\left(\frac{(-1)^{n+1}\cdot2}{\pi\cdot n}\cdot\sin\left(\frac{\pi\cdot n\cdot x}{2}\right)\right)$
6f3269e2-8a1e-4e41-932c-de8a74a48740
multivariable_calculus
true

Compute the area bounded by $r = a \cdot \cos(3 \cdot \varphi)$, which lies in the circle $r = \frac{ a }{ 2 }$ ($a > 0$).
$A$ = $\frac{864\cdot\pi-648\cdot\sqrt{3}}{5184}\cdot a^2$
6f89334a-66bb-4ebe-ac5b-66e0e30d45e4
differential_calc
false
null
Find the derivative of the function: $y = -4 \cdot x^{\sqrt{5 \cdot x}}$
$\frac{ d y }{d x}$ = $-\left(\frac{4\cdot\sqrt{5}}{\sqrt{x}}+\frac{2\cdot\sqrt{5}\cdot\ln(x)}{\sqrt{x}}\right)\cdot x^{\sqrt{5}\cdot\sqrt{x}}$
6f92ed01-c020-4669-aa75-6a1803ed5b3e
sequences_series
false
null
Write the Taylor series for the function $f(x) = x \cdot \sin(2 \cdot x)$ at the point $x = \pi$ up to the third term (zero or non-zero).
The final answer: $0+2\cdot\pi\cdot(x-\pi)+\frac{4}{2}\cdot(x-\pi)^2$
6fbded2f-1451-45fb-b45b-817b52db5081
algebra
false
null
A substance has a half-life of $2.045$ minutes. If the initial amount of the substance was $132.8$ grams, find the exponential decay model formula. How many half-lives will have passed before the substance decays to $8.3$ grams?
Model formula: $A=132.8\cdot e^{\frac{\ln(0.5)}{2.045}\cdot t}$ Half-lives count: $4$
70213df7-9bd5-40b0-8ee8-80692374e39b
algebra
false
null
A town has an initial population of $53\ 000$. It grows at a constant rate of $2100$ per year for $5$ years. The linear function that models the town’s population $P$ as a function of the year is: $P(t) = 53\ 000 + 2100 \cdot t$, where $t$ is the number of years since the model began. Find the $x$- and $y$-intercepts.
$x$-intercept: $P\left(-\frac{530}{21},0\right)$ $y$-intercept: $P(0,53000)$
70d548f2-b9a7-4d27-ad68-b0e32d82f5f7
differential_calc
false
null
Find the derivative of the function $y = \arcsin\left(\sqrt{1-x^2}\right)$.
$y'$ = $-\frac{x}{|x|\cdot\sqrt{1-x^2}}$
70d6b1ed-272e-406b-853f-826b497f9b81
integral_calc
false
null
Solve the integral: $$ \int 5 \cdot \cos(3 \cdot x)^6 \, dx $$
$\int 5 \cdot \cos(3 \cdot x)^6 \, dx$ = $\frac{5}{8}\cdot\left(\frac{5}{2}\cdot x+\frac{2\cdot\sin(6\cdot x)}{3}+\frac{\sin(12\cdot x)}{8}-\frac{\sin(6\cdot x)^3}{18}\right)+C$
70e0b33e-584d-4813-b358-4056044430ea
precalculus_review
false
null
Find the range of $f(x) = \frac{ x }{ 1+x^2 }$.
The final answer: $-\frac{1}{2}\le y\le\frac{1}{2}$
70ff52a6-d767-4315-9035-91c8cf38c9c5
differential_calc
false
null
Consider a limousine that gets $m(v) = \frac{ 120-2 \cdot v }{ 5 }$ mi/gal at speed $v$, the chauffer costs $\$15$/h, and gas is $\$3.5$/gal. Find the cheapest driving speed.
approximately $34.02$ mph.
7109a551-97df-40ff-9e0d-8973e82c6726
precalculus_review
false
null
Find the degree, $y$-intercept, and zeros for the polynomial function $f(x) = 2 \cdot x^2 + 9 \cdot x - 5$. 1. Degree 2. $y$-intercept 3. Zeros
1. Degree: $2$ 2. $y$-intercept: $-5$, $\frac{1}{2}$ 3. Zeros: $-5$, $\frac{1}{2}$
710e1a90-6ff1-4545-a62e-9c4e38632819
integral_calc
false
null
Evaluate $\int_{0}^\pi \sin(5 \cdot x) \cdot \sqrt{\cos(5 \cdot x)} \, dx$ using substitution.
The final answer: $\frac{2+2\cdot\sqrt{-1}}{15}$
714057c2-e085-4f6f-b664-9c3fe27b6536
precalculus_review
false
null
Given two functions $f(x) = \sqrt{x^2 - 1}$ and $g(x) = \sqrt{3 - x}$: 1. Compute $f\left(g(x)\right)$ 2. Compute $\frac{ f(x) }{ g(x) }$ and find the domain of the new function.
1. The new function $f\left(g(x)\right)$ is $f\left(g(x)\right)=\sqrt{2-x}$ 2. The function $\frac{ f(x) }{ g(x) }$ is $\frac{\sqrt{x^2-1}}{\sqrt{3-x}}$, and the domain for the function is $1\le x<3 \lor x\le-1$
714ca4e7-c104-45fa-b50b-076018133858
multivariable_calculus
false
null
Find the center of mass of the region $\rho(x,y) = x \cdot y$ on the circle with radius $1$ in the first quadrant only.
Center of mass: $P\left(\frac{8}{15},\frac{8}{15}\right)$
71669c2a-8586-4e3d-b006-4b18c6143243
precalculus_review
false
null
Find the domain of the function $f(x) = \sqrt{\cos\left(\sin(x)\right)} + \arcsin\left(\frac{ 1 + x^2 }{ 2 \cdot x }\right)$.
The final answer: $x=-1 \lor x=1$
72196b45-ca12-4d25-8f07-dc1dba889917
algebra
false
null
A town has an initial population of $80\ 000$. It grows at a constant rate of $2200$ per year for $5$ years. The linear function that models the town’s population $P$ as a function of the year is: $P(t) = 80\ 000 + 2200 \cdot t$, where $t$ is the number of years since the model began. When will the population reach $120\ 000$?
$t$: $\frac{200}{11}$
7224831a-52ae-4ea0-9309-2dcc80603125
integral_calc
true

Find the areas enclosed by the curves $y^2 = 2 \cdot x$ and $y^2 = 4 \cdot x - x^2$ using integration with respect to $x$: 1. The area of the smaller, shaded region. 2. The area of the larger, yellow region.
1. The area of the smaller, shaded region is $2\cdot\left(\pi-\frac{8}{3}\right)$ 2. The area of the larger, yellow region is $2\cdot\left(\pi+\frac{8}{3}\right)$
722661f3-5831-4484-beba-4d3d1b7997eb
integral_calc
false
null
Find the arc length of the parametric curve given by $x(t) = \frac{ 1 }{ 6 } \cdot t^3$, $y(t) = \frac{ 1 }{ 9 } \cdot t^3$ on $[1,3]$.
The final answer: $\frac{1573}{90}$
72bf7325-f168-4eca-843c-f1a99eba2924
algebra
false
null
Calculate the average rate of change of the function $f(x) = 20 \cdot x - 2 \cdot x^2$ near $a=3$ over the intervals $[a,a+h]$ for $h=0.1$, $0.01$, and $0.001$. Use these values to estimate the instantaneous rate of change.
1. The average rate of change for $f$ near $a$ with $h=0.1$ is: $7.8$ 2. The average rate of change for $f$ near $a$ with $h=0.01$ is: $7.98$ 3. The average rate of change for $f$ near $a$ with $h=0.001$ is: $7.998$ 4. An estimate of the instantaneous rate of change is: $8$
72f5d1f8-3991-417a-8065-2b5469b8c052
algebra
false
null
Use Descartes’ Rule of Signs to determine the possible number of positive and negative real zeros of the following polynomial: $p(x) = x^3 - 6 \cdot x^2 + 2 \cdot x - 3$
The number of positive zeros: $1$, $3$ The number of negative zeros: $0$
73162ddc-c250-44af-bed6-5ca6cbd8440d
precalculus_review
false
null
A restaurant owner wants to sell T-shirts advertising his brand. He recalls that there is a fixed cost and variable cost, although he does not remember the values. He does know that the T-shirt printing company charges $\$440$ for $20$ shirts and $\$1000$ for $100$ shirts. 1. Find the equation $C=f(x)$ that describes the total cost as a function of the number of shirts. 2. Determine how many shirts he must sell to break even if he sells the shirts for $\$10$ each.
1. $f(x)$ = $7\cdot x+300$ 2. $100$ shirts.
731b3efc-3845-4ff1-8226-56166a4e8859
multivariable_calculus
false
null
Find the moment of inertia of one arch of the cycloid $x = a^2 \cdot \left(\frac{ t }{ 4 } - \sin\left(\frac{ t }{ 4 }\right)\right)$, $y = a^2 \cdot \left(1 - \cos\left(\frac{ t }{ 4 }\right)\right)$ relative to the x-axis.
Moment of Inertia: $\frac{2}{15}\cdot\left(64-43\cdot\sqrt{2}\right)\cdot a^6$
734307ce-146c-4611-8188-1e99a85f7008
algebra
false
null
The radius and height of the right circular cylinder differ by two meters. The height is greater than the radius, and the volume is $15.125 \cdot \pi$ cubic meters. Find the dimensions of the cylinder.
$r$: $3.95546093-2$ $h$: $3.95546093$
73840a81-4100-4726-8539-d48e5f16acf9
sequences_series
false
null
Find the sum of the series $\sum_{k=2}^\infty \left(\frac{ 3^{k-1} }{ 4^{3 \cdot k+1} }\right)$.
The final answer: $\frac{3}{15616}$
73d9da66-451f-4585-a1cb-d03ba5a29318
integral_calc
false
null
Compute the integral: $$ \int \frac{ 6 \cdot x^3-7 \cdot x^2+3 \cdot x-1 }{ 2 \cdot x-3 \cdot x^2 } \, dx $$
Answer is: $-x^2+x-\frac{1}{3}\cdot\ln\left(\left|x-\frac{2}{3}\right|\right)+\frac{1}{2}\cdot\ln\left(\left|1-\frac{2}{3\cdot x}\right|\right)+C$
73de1a56-66c6-4eac-929a-6307d780e875
integral_calc
false
null
Compute the integral: $$ \int \frac{ x+2 }{ \sqrt{6+10 \cdot x+25 \cdot x^2} } \, dx $$
$\int \frac{ x+2 }{ \sqrt{6+10 \cdot x+25 \cdot x^2} } \, dx$ = $\frac{1}{25}\cdot\sqrt{6+10\cdot x+25\cdot x^2}+\frac{9}{25}\cdot\ln\left(1+5\cdot x+\sqrt{1+(5\cdot x+1)^2}\right)+C$
742ba56b-3cf1-4e54-912d-1fe003842acb
sequences_series
false
null
Determine the Taylor series for the function $f(x) = rac{ 1-x }{ (1+2 \cdot x)^3 }$, centered at $x = 0$. Use this decomposition to find the sum of the series $\sum_{n=0}^\infty rac{ (-1)^n \cdot (n+1) \cdot (3 \cdot n+4) }{ 2^{n+2} }$. 1. Submit the Taylor series in summation notation. 2. Submit the sum of the series.
1. The Taylor series in summation notation is $\sum_{n=0}^\infty\left(\frac{(-1)^{n+2}\cdot\left((n+1)!\right)\cdot2^{n-2}\cdot(3\cdot n+4)}{n!}\cdot x^n\right)$ 2. The sum of the series is $\frac{2}{9}$
745e79db-e211-4134-9a5f-2f6014fa502b
differential_calc
false
null
For the function $y = 2 \cdot x + \ln\left(\frac{ 1 }{ \frac{ x^2 }{ 2 } - 1 }\right)$, determine the intervals where the function is increasing and decreasing. Submit as your final answer: 1. Interval(s) where the function is increasing 2. Interval(s) where the function is decreasing
1. Interval(s) where the function is increasing: $\left(-\infty,-\sqrt{2}\right)$, $(2,\infty)$ 2. Interval(s) where the function is decreasing: $\left(\sqrt{2},2\right)$
746dd4c5-1521-4d23-9036-77e4ded2dd2e
precalculus_review
false
null
Divide $C = \frac{ (3-i)^2 }{ (3+i)^2 }$.
The final answer: $C=\frac{7}{25}-\frac{24}{25}\cdot i$
7488ad33-1fbe-467c-afe4-e964b3e99a87
algebra
false
null
If an investor invests $\$23\ 000$ into two bonds, the first one that pays $4\%$ in simple interest, and the second one paying $2\%$ simple interest, and the investor earns $\$710$ annual interest, how much was invested in each account?
Add both values to your final answer here: $x=12500$, $y=10500$
74f2e8e7-1487-4b76-8039-92dab68d4d30
algebra
false
null
Solve the following equations: 1. $-t + (5t - 7) = -5$ 2. $21 - 3(2 - w) = -12$ 3. $9 = 8b - (2b - 3)$ 4. $4.5r - 2r + 3(r - 1) = 10.75$ 5. $1.2(x - 8) + 2.4(x + 1) = 7.2$ 6. $4.9m + (-3.2m) - 13 = -2.63$ 7. $4(2.25w + 3.1) - 2.75w = 44.9$
The solutions to the given equations are: 1. $t=\frac{ 1 }{ 2 }$ 2. $w=-9$ 3. $b=1$ 4. $r=\frac{ 5 }{ 2 }$ 5. $x=4$ 6. $m=\frac{ 61 }{ 10 }$ 7. $w=\frac{ 26 }{ 5 }$
74fc23ba-f1e6-4bf3-8e2e-70d75414bf97
sequences_series
false
null
Calculate $\sqrt[3]{30}$ with an estimate error of $0.001$, using series expansion.
The final answer: $\frac{755}{243}$
755ad080-c182-4f30-96a4-1a2cb0462824
multivariable_calculus
false
null
Find $I=\int_{0}^\pi \int_{0}^{4 \cdot \sin\left(\theta\right)} \frac{ 4 }{ \sqrt{16-r^2} } \cdot r \, d r \, d \theta$.
The final answer: $I=32\cdot\left(\frac{\pi}{2}-1\right)$
756c8302-f766-4e1a-980a-9d56e3adf724
integral_calc
false
null
Compute the integral: $$ \int \frac{ \sqrt{1+x^2} }{ x } \, dx $$
$\int \frac{ \sqrt{1+x^2} }{ x } \, dx$ = $\sqrt{x^2+1}+\frac{1}{2}\cdot\ln\left(\left|\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|\right)+C$
75d9bd99-c5d9-4b47-8d12-616de1d6f158
algebra
false
null
Newton’s Law of Cooling states that the temperature $T$ of an object at any time $t$ can be described by the equation $T = T_{s} + (T_{0} - T_{s}) \cdot e^{-k \cdot t}$, where $T_{s}$ is the temperature of the surrounding environment, $T_{0}$ is the initial temperature of the object, and $k$ is the cooling rate. Use the definition of a logarithm along with properties of logarithms to solve the formula for time $t$ such that $t$ is equal to a single logarithm.
$t$ = $\ln\left(\left(\frac{T-T_s}{T_0-T_s}\right)^{-\frac{1}{k}}\right)$
772d7be7-01a3-4370-b536-4a7ceed86f31
precalculus_review
false
null
Solve $x \cdot (x+1) \cdot (x+2) \cdot (x+3) = 0.5625$.
The final answer: $x=-\frac{3}{2} \lor x=\frac{-3+\sqrt{10}}{2} \lor x=\frac{-3-\sqrt{10}}{2}$
774c7757-4ed5-43ae-b623-dac59dd300e8
integral_calc
false
null
Compute the integral: $$ \int \frac{ \cos(2 \cdot x)^4 }{ \sin(2 \cdot x)^3 } \, dx $$
$\int \frac{ \cos(2 \cdot x)^4 }{ \sin(2 \cdot x)^3 } \, dx$ = $C+\frac{3}{8}\cdot\ln\left(\frac{1+\cos(2\cdot x)}{1-\cos(2\cdot x)}\right)-\frac{\left(\cos(2\cdot x)\right)^3}{4-4\cdot\left(\cos(2\cdot x)\right)^2}-\frac{3}{4}\cdot\cos(2\cdot x)$
77d38bbc-e5c6-48da-9bc0-143258d0e51e
differential_calc
false
null
Make full curve sketching of $y = \ln\left(\left|\frac{ \frac{ x }{ 2 }-3 }{ \frac{ x }{ 2 }+3 }\right|\right)$ . Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-\infty,-6)\cup(-6,6)\cup(6,\infty)$ 2. Vertical asymptotes $x=-6$, $x=6$ 3. Horizontal asymptotes $y=0$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(-\infty,-6)$, $(6,\infty)$ 6. Intervals where the function is decreasing $(-6,6)$ 7. Intervals where the function is concave up $(-\infty,-6)$, $(-6,0)$ 8. Intervals where the function is concave down $(0,6)$, $(6,\infty)$ 9. Points of inflection $P(0,0)$
7836bb59-a1e0-4aff-ba47-a97fb07b38df
integral_calc
false
null
Solve the integral: $$ \int 3 \cdot \sin(2 \cdot x)^4 \cdot \cos(2 \cdot x)^2 \, dx $$
$\int 3 \cdot \sin(2 \cdot x)^4 \cdot \cos(2 \cdot x)^2 \, dx$ = $\frac{3}{16}\cdot\left(x-\frac{\sin(8\cdot x)}{8}-\frac{\sin(4\cdot x)}{8}+\frac{\sin(12\cdot x)}{24}\right)+C$
787ba86e-1894-49ad-9a6d-bb1607e13786
differential_calc
false
null
Sketch the curve: $y = 4 \cdot x \cdot \sqrt{5-x^2}$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $\left[-1\cdot5^{2^{-1}},5^{2^{-1}}\right]$ 2. Vertical asymptotes: None 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(-\frac{\sqrt{5}}{\sqrt{2}},\frac{\sqrt{5}}{\sqrt{2}}\right)$ 6. Intervals where the function is decreasing: $\left(-\sqrt{5},-\frac{\sqrt{5}}{\sqrt{2}}\right)$, $\left(\frac{\sqrt{5}}{\sqrt{2}},\sqrt{5}\right)$ 7. Intervals where the function is concave up: $\left(-\sqrt{5},0\right)$ 8. Intervals where the function is concave down: $\left(0,\sqrt{5}\right)$ 9. Points of inflection: $P(0,0)$
7888c61c-8515-4146-b87d-2ca3f2030b2c
sequences_series
false
null
Compute $\sqrt[5]{240}$ with an accuracy of $0.0001$.
The final answer: $2.9926$
78a834ca-8f7b-4688-9315-52ce28145e29
differential_calc
true

Given $r(t) = \frac{ g(t) }{ h(t) }$, find $r'(3)$ using the table below:
$r'(3)$ = $-\frac{7}{4}$
78b5f141-fca2-40af-8f51-cf73f052b7db
differential_calc
false
null
Find the derivative of the function $y = \frac{ 3 \cdot \csc(x) - 2 \cdot \sin(x) }{ 5 \cdot \left(\cos(x)\right)^5 } - \frac{ 16 }{ 5 } \cdot \cot(2 \cdot x)$.
$y'$ = $\frac{1}{\left(\sin(x)\right)^2\cdot\left(\cos(x)\right)^6}$
790253e0-8f58-47bc-92b9-ac728a08533a
algebra
false
null
Subtract the rational expression, then simplify: $$ \frac{ 12 }{ 2 \cdot q }-\frac{ 6 }{ 3 \cdot p } $$
The final answer: $\frac{6\cdot p-2\cdot q}{p\cdot q}$
795dc875-d474-4ccd-a036-0e9f12923e70
precalculus_review
false
null
If $\tan(\theta) = \sqrt{x^2 - 1}$, find $\sec(\theta) + \tan(\theta)$.
$\sec(\theta) + \tan(\theta)$ = $x+\sqrt{x^2-1}$ (Enter your solution as an expression using only the variable $x$.)
798ed40f-8175-4491-9920-ae86878a57a9
algebra
false
null
The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $84\ 000$ subscribers at a quarterly charge of $\$30$. Market research has suggested that if the owners raise the price to $\$34$, they would lose $9000$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?
The final answer: $\frac{101}{3}$
79cc6592-1b0c-4b62-ac57-f7501f01bfae
algebra
false
null
Solve the following equations: 1. $6 (m+4) - 2m = -8$ 2. $44 = 4 (8+h)$ 3. $0.75 (8t - 4) = -2$ 4. $3 (5-t) - 4t = 18$ 5. $2 (y-5) = 16$ 6. $0.1 (h+20) = 3$ 7. $7y + 3 (8-y) = -12$
The solutions to the given equations are: 1. $m=-8$ 2. $h=3$ 3. $t=0.166666666666667$ 4. $t=-\frac{ 3 }{ 7 }$ 5. $y=13$ 6. $h=10$ 7. $y=-9$
79d8b155-285b-42e4-852c-e2080b752e13
precalculus_review
false
null
Find the value $k$ that satisfies the following integral equation: $$ \int_{1}^k \log_{2}(x) \, dx = 2 - \frac{ 1 }{ \ln(2) } $$
$k$ = $2$
7a051da0-75c2-4686-98b3-d008e37fda65
multivariable_calculus
true

A guy-wire supports a pole that is 75 feet high. One end of the wire is attached to the top of the pole and the other end is anchored to the ground 50 feet from the base of the pole. Determine the horizontal and vertical components of the force of tension in the wire if its magnitude is 50 lb. (Round to the nearest integer.)
Horizontal component: $42$ Vertical component: $28$
7a75b4a6-486b-4925-b92c-8982e6bc632c
sequences_series
false
null
Find the radius of convergence of the series: $$ \sum_{k=1}^\infty \left(\frac{ \left(k!\right)^3 \cdot x^k }{ (2 \cdot k)! }\right) $$
$R$ = $0$
7a7e986f-3a25-4d58-b29e-e84d61b1d013
precalculus_review
false
null
Solve the following absolute value equation: $x^2 - 2 \cdot |x| - 3 = 0$
The final answer: $x=-3 \lor x=3$
7ab2c0ae-7112-4339-907c-e65bac3a2548
multivariable_calculus
false
null
The surface of a large cup is formed by revolving the graph of the function $y = 0.25 \cdot x^{1.6}$ from $x = 0$ to $x = 5$ about the $y$-axis (measured in centimeters). Find the curvature $\kappa$ of the generating curve as a function of $x$.
$\kappa$ = $\frac{30}{x^{\frac{2}{5}}\cdot\left(25+4\cdot x^{\frac{6}{5}}\right)^{\frac{3}{2}}}$
7ad62465-33c4-44bc-83cf-3a52da5732c3
algebra
true

Using the given graphs of $f(x)$ and $g(x)$, find $g\left(g(3)\right)$.
The final answer: $g\left(g(3)\right)$ = $5$
7b259818-c9a0-4cac-9c03-146900fa791b
multivariable_calculus
false
null
Evaluate the integral: $$ \int \int \int_{R} 3 \cdot y \, dV $$ where $R$ is bounded by: 1. $0 \le x \le 1$ 2. $0 \le y \le x$ 3. $0 \le z \le \sqrt{9-y^2}$
$\int \int \int_{R} 3 \cdot y \, dV$ = $\frac{216-86\cdot\sqrt{2}-243\cdot\arcsin\left(\frac{1}{3}\right)}{8}$
7b9cce25-460c-4712-bb49-a0d60ded955c
sequences_series
false
null
Use the substitution $(b+x)^r = (b+a)^r \cdot \left(1 + \frac{ x-a }{ b+a }\right)^r$ in the binomial expansion to find the Taylor series of the function $\sqrt{x+2}$ with the center $a=1$.
$\sqrt{x+2}$ = $\sum_{n=0}^\infty\left(3^{\frac{1}{2}-n}\cdot C_{\frac{1}{2}}^n\cdot(x-1)^n\right)$
7c945151-a3be-4cdf-ac65-effe67ac8fe4
algebra
true

Find the slope of the line pictured:
The final answer: $0$
7ce3adca-6f57-46b9-a522-ebaad3f0a35e
algebra
false
null
Use Descartes’ Rule of Signs to determine the possible number of positive and negative real zeros of the following polynomial: $f(x) = 10 \cdot x^4 - 21 \cdot x^2 + 11$
The possible number of positive zeros: $2$, $0$ The possible number of negative zeros: $2$, $0$
7d1cb715-71f2-4ea7-97ae-3598147c0dff
integral_calc
true

Find the area between the curves $y^2 = x^3 - x^2$ and $x = 2$:
Area: $\frac{32}{15}$
7d29f145-f403-4580-92f3-f1edafc102c6
sequences_series
true

Find the Fourier series expansion for the periodic function $f(x) = x - 1$ (on $(-1, 1]$) with period $2$.
The Fourier series is: $f(x)\approx\sum_{n=1}^\infty-\frac{2\cdot(-1)^n\cdot\sin(n\cdot x)}{\pi\cdot n}-1$
7d2b09cc-83d7-43ce-b44f-8ae789286891
sequences_series
false
null
Find the Fourier series of the function $\varphi(x) = \frac{ x }{ 4 }$ in the interval $(0,2 \cdot \pi)$.
The Fourier series is: $\frac{\pi}{4}-\sum_{n=1}^\infty\left(\frac{\sin(n\cdot x)}{2\cdot n}\right)$
7d6bd5ff-9338-4e3b-91bb-6e8b1553040e
precalculus_review
true

Determine all six trigonomeric functions for the angle $ heta$ formed by the x-axis and the line passing through the origin and the point $P$ =$(8,-15)$. 1. $\sin( heta)$ 2. $\cos( heta)$ 3. $ an( heta)$ 4. $\csc( heta)$ 5. $\sec( heta)$ 6. $\cot( heta)$
1. $\sin( heta)$ = $\frac{15}{17}$ 2. $\cos( heta)$ = $\frac{8}{17}$ 3. $ an( heta)$ = $\frac{15}{8}$ 4. $\csc( heta)$ = $\frac{17}{15}$ 5. $\sec( heta)$ = $\frac{17}{8}$ 6. $\cot( heta)$ = $\frac{8}{15}$
7db54c2b-7ca2-43b2-9fc5-f33d8b54d9b8
multivariable_calculus
false
null
The function $y=f(x)$ in parametric form is: $x = t^5 - 5 \cdot t^3 - 20 \cdot t + 7$ $y = 4 \cdot t^3 - 3 \cdot t^2 - 18 \cdot t + 3$ on the interval $\left(-2<t<2\right)$. Find extreme values of this function. Submit as your final answer: 1. The point(s) where the function has a maximum or maxima 2. The point(s) where the function has a minimum or minima
1. The point(s) where the function has a maximum: $P(31,14)$ 2. The point(s) where the function has a minimum: $P\left(-\frac{1033}{32},-\frac{69}{4}\right)$
7dfe7434-cf7f-4e8b-bbf3-c870a7a0ef46
differential_calc
false
null
The following polynomial functions are given: $f(x) = x^5 + x^4 + x + 11$ $g(x) = x^3 + x^2 - 10$ What is the value of $\frac{ f'(2) }{ g'(-2) }$?
The final answer: $\frac{f'(2)}{g'(-2)}=\frac{123}{8}$
7e2fda44-9aea-49f6-88a4-cf14f2342966
integral_calc
false
null
Compute the integral: $$ \int \frac{ x + \sqrt[3]{x^2} + \sqrt[6]{x} }{ x \cdot \left(1 + \sqrt[3]{x}\right) } \, dx $$
$\int \frac{ x + \sqrt[3]{x^2} + \sqrt[6]{x} }{ x \cdot \left(1 + \sqrt[3]{x}\right) } \, dx$ = $C+6\cdot\left(\frac{1}{4}\cdot\sqrt[6]{x}^4+\arctan\left(\sqrt[6]{x}\right)\right)$
7e6d17d0-89e3-4b9f-8c9c-48b2fae8878b
multivariable_calculus
false
null
For the function $z = \ln\left(e^x + e^t\right)$, find: 1. $\frac{ d z }{d t}$ 2. $\frac{ d z }{d t}$ when $x = t^3$
1. $\frac{ d z }{d t}$: $\frac{e^t}{e^t+e^x}$ 2. $\frac{ d z }{d t}$, when $x = t^3$: $\frac{3\cdot e^{t^3}\cdot t^2+e^t}{e^t+e^x}$
7edd29b3-3371-4552-8048-2d9b0fdc6006
multivariable_calculus
false
null
The following vectors are given: $u = 2 \cdot \mathbf{i} - 3 \cdot \mathbf{j} + 2 \cdot \mathbf{k}$ $v = 3 \cdot \mathbf{i} + 2 \cdot \mathbf{j} - 3 \cdot \mathbf{k}$ Find the following component: Project of $u$ onto $v$
The final answer: $w=\frac{9}{11}\cdot i+\frac{6}{11}\cdot j-\frac{9}{11}\cdot k$
7eedb03b-f388-4069-b2c8-b099c9c16fcf
multivariable_calculus
false
null
Find the equation of a circle which passes through $(-3,1)$ and its center is on the same line with the centers of the following circles: 1. $(x-5)^2 + y^2 = 5$ 2. $x^2 + (y-10)^2 = 130$
The final answer: $(x-2)^2+(y-6)^2=50$
7efd2ae1-d387-447f-ad12-4b0dc2ab7a22
differential_calc
false
null
Sketch the curve: $y = 3 \cdot x^2 - x^4 - 2$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes (Leave blank if there are no vertical asymptotes) 3. Horizontal asymptotes (Leave blank if there are no horizontal asymptotes) 4. Slant asymptotes (Leave blank if there are no slant asymptotes) 5. Intervals where the function is increasing (Leave blank if there are no such intervals) 6. Intervals where the function is decreasing (Leave blank if there are no such intervals) 7. Intervals where the function is concave up (Leave blank if there are no such intervals) 8. Intervals where the function is concave down (Leave blank if there are no such intervals) 9. Points of inflection (Leave blank if there are no points of inflection)
1. The domain (in interval notation): $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes: None 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(-\infty,-\frac{\sqrt{3}}{\sqrt{2}}\right)$, $\left(0,\frac{\sqrt{3}}{\sqrt{2}}\right)$ 6. Intervals where the function is decreasing: $\left(-\frac{\sqrt{3}}{\sqrt{2}},0\right)$, $\left(\frac{\sqrt{3}}{\sqrt{2}},\infty\right)$ 7. Intervals where the function is concave up: $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ 8. Intervals where the function is concave down: $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}},\infty\right)$ 9. Points of inflection: $P\left(-\frac{1}{\sqrt{2}},-\frac{3}{4}\right)$, $P\left(\frac{1}{\sqrt{2}},-\frac{3}{4}\right)$
7f8713f5-81ca-4ec4-9134-e58d8b8b2c1e
differential_calc
false
null
Make full curve sketching of $y = 2 \cdot \arcsin\left(\frac{ 1-7 \cdot x^2 }{ 1+7 \cdot x^2 }\right)$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes None 3. Horizontal asymptotes $y=-\pi$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(-\infty,0)$ 6. Intervals where the function is decreasing $(0,\infty)$, $(-\infty,0)$ 7. Intervals where the function is concave up $(0,\infty)$, $(-\infty,0)$ 8. Intervals where the function is concave down None 9. Points of inflection None
802213f1-06e1-4063-b572-53eecf9dc2fc
integral_calc
false
null
Evaluate the integral: $$ I = \int 2 \cdot \ln\left(\sqrt{2-x}+\sqrt{2+x}\right) \, dx $$
The final answer: $2\cdot x\cdot\ln\left(\sqrt{2-x}+\sqrt{2+x}\right)-\left((C+x)-2\cdot\arcsin\left(\frac{x}{2}\right)\right)$
802382d0-0530-42f9-9a0a-48e12b08da84
differential_calc
true

The graph of a function $f$ is shown above. If $c(x) = 3 \cdot x \cdot f(x) - \frac{ e^x }{ f(x) }$, determine the value of $c'(0)$.
$c'(0)$ = $5$
8061d2e1-8561-4f7f-9ae9-18f132ca2705
precalculus_review
false
null
Solve $\frac{ 1 }{ x \cdot (x+2) }-\frac{ 1 }{ (x+1)^2 }=\frac{ 1 }{ 12 }$
The final answer: $x=-3 \lor x=1$
80a14173-80b6-4e3b-ace4-a3ff3b2af70e
algebra
false
null
A formula for the normal systolic blood pressure for a man age $A$, measured in mmHg, is given as $P = 0.006 \cdot A^2 - 0.02 \cdot A + 120$. Find the age to the nearest year of a man whose normal blood pressure measures $125$ mmHg.
The final answer: $31$
80f9d7db-f542-4e35-b4cf-2748290a1ac3
integral_calc
false
null
Compute the integral: $$ \int \frac{ \tan(x) }{ \sqrt{\sin(x)^4+\cos(x)^4} } \, dx $$
$\int \frac{ \tan(x) }{ \sqrt{\sin(x)^4+\cos(x)^4} } \, dx$ = $\frac{1}{2}\cdot\ln\left(\tan(x)^2+\sqrt{\tan(x)^4+1}\right)+C$
8221ca9b-f6a2-4cfb-bf1a-ae2a389b6481
integral_calc
false
null
Use the table of integrals to evaluate the integral $\int{\left(\sin(y)\right)^2 \cdot \left(\cos(y)\right)^3 \, dy}$. Use this link to access the table of integrals: [Table of Integrals](https://openstax.org/books/calculus-volume-2/pages/a-table-of-integrals)
1. Submit the formula used: $\int{\left(\sin(u)\right)^n \cdot \left(\cos(u)\right)^m d u}=-\frac{ \left(\sin(u)\right)^{n-1} \cdot \left(\cos(u)\right)^{m+1} }{ n+m }+\frac{ n-1 }{ n+m } \cdot \int{\left(\sin(u)\right)^{n-2} \cdot \left(\cos(u)\right)^m d u}$, $\int{\left(\cos(u)\right)^3 d u}=\frac{ 1 }{ 3 } \cdot \left(2+\left(\cos(u)\right)^2\right) \cdot \sin(u)+c$ (For example: to evaluate $\int{(x+3)^2 \, dx}$ you would use and submit the formula $\int{u^n \, du}=\frac{ u^{n+1} }{ n+1 }+C$). 2. $\int{\left(\sin(y)\right)^2 \cdot \left(\cos(y)\right)^3 \, dy}$ = $-\frac{\sin(y)\cdot\left(\cos(y)\right)^4}{5}+\frac{1}{5}\cdot\frac{1}{3}\cdot\left(2+\left(\cos(y)\right)^2\right)\cdot\sin(y)+c$
82584e44-4d1a-47ba-99f9-7cf389b26994
differential_calc
false
null
Find the first derivative of the function: $$ y = \left(3 \cdot a^2 - 2 \cdot a \cdot b \cdot x + \frac{ 5 }{ 3 } \cdot b^2 \cdot x^2\right) \cdot \sqrt[3]{\left(\frac{ a }{ 3 } + \frac{ b }{ 3 } \cdot x\right)^2} $$
The first derivative is: $\frac{40\cdot b^3\cdot x^2}{9\cdot3^{\frac{2}{3}}\cdot\sqrt[3]{a+b\cdot x}}$
82e1e37e-a913-4df5-bfa6-6fc6880a6ae2
sequences_series
false
null
Find the Taylor series of the given function $f(x) = \frac{ 1 }{ (x-1)^2 }$ centered at the indicated point: $a=0$ . (Hint: Differentiate $\frac{ 1 }{ 1-x }$.)
$\frac{ 1 }{ (x-1)^2 }$ = $\sum_{n=0}^\infty\left((n+1)\cdot x^n\right)$
83a37faf-1b91-4237-bf28-3ddc2db64ef4
algebra
false
null
A biologist observes that a certain bacterial colony triples every 4 hours and after 12 hours occupies 1 square centimeter. 1. How much area was occupied by the colony when first observed? 2. What is the doubling time for the colony?
1. $\frac{1}{27}$ cm². (Enter an exact solution as a fraction.) 2. $2.52$ hours. (Enter an approximate solution rounded to 2 decimal places.)
840a022b-2ef4-4fad-868b-52d564d2f551
sequences_series
false
null
Find a “reasonable” upper-bound on the error in approximating $f(x) = x \cdot \ln(x)$ by its 3rd order Taylor polynomial $P_{3}(x)$ at $a = 1$ valid for all values of $x$ such that $|x - 1| \leq 0.7$.
The final answer: $\frac{2}{(0.3)^3}\cdot\frac{(0.7)^4}{4!}$
84575e59-630e-42a7-8f74-0a98ced4f213
differential_calc
true

Use the following graph and find: $\lim_{x \to 0^{-}}\left(f(x)\right)$
$\lim_{x \to 0^{-}}\left(f(x)\right)$: $1$
849aee88-91bf-42c9-9241-e0e9af266311
integral_calc
false
null
Compute the integral: $$ \int \frac{ \sqrt{4+x^2} }{ x } \, dx $$
$\int \frac{ \sqrt{4+x^2} }{ x } \, dx$ = $C+\sqrt{4+x^2}+\ln\left(\left|\frac{\sqrt{4+x^2}-2}{2+\sqrt{4+x^2}}\right|\right)$
84c6a419-c103-41d5-aad5-dd8e690c6e88
differential_calc
false
null
Compute the limit: $$ \lim_{x \to 0}\left(\frac{ -\sin(x) }{ x }\right)^{\frac{ 1 }{ 4 \cdot x^2 }} $$
$\lim_{x \to 0}\left(\frac{ -\sin(x) }{ x }\right)^{\frac{ 1 }{ 4 \cdot x^2 }}$ = $e^{-\frac{1}{24}}$
84ca0349-623e-4dd9-8420-f4ee6fb7c129
multivariable_calculus
true

Evaluate the triple integral $\int \int \int f(x,y,z) \, dx \, dy \, dz$ over the solid $f(x,y,z) = x \cdot y$, $x^2 + y^2 \le 1$, $x \ge 0$, $x \ge y$, $-1 \le z \le 1$:
$\int \int \int f(x,y,z) \, dx \, dy \, dz$ = $\frac{1}{8}$
84d0c8fe-04f1-412b-84a4-45f02aa9a4e2
integral_calc
true

Let $R$ be the region in the first quadrant enclosed by the graph of $g(x) = \frac{ 12 }{ 1+x^2 }-2$ as shown in the figure above. 1. Write, but do not evaluate, an integral expression that gives the volume of the solid generated when $R$ is revolved about the $x$-axis. 2. Write, but do not evaluate, an integral expression that gives the volume of the solid generated when $R$ is revolved about the $y$-axis.
1. $\int_0^{2.236}\left(\pi\cdot\left(\frac{12}{1+x^2}-2\right)^2\right)dx$ 2. $\int_0^{10}\left(\pi\cdot\left(\frac{12}{y+2}-1\right)\right)dy$
84faeb60-6ed1-4ef8-b2cc-23a767cfb04e
precalculus_review
false
null
Solve the following system of equations: 1. $x + y = \frac{ 2 \cdot \pi }{ 3 }$ 2. $\frac{ \sin(x) }{ \sin(y) } = 2$
The final answer: $x=\frac{\pi}{2}+\pi\cdot k$, $y=\frac{\pi}{6}-\pi\cdot k$
85a160ac-e54e-409a-ab21-06d3510b70c4
differential_calc
false
null
Find the maximum and minimum values of the function $r = \frac{ 1 }{ 3 } \cdot \sin(x) + \sin\left(\frac{ x }{ 3 }\right)$ in the closed interval $\left[0, \frac{ 3 }{ 2 } \cdot \pi\right]$.
Maximum Value: $\frac{2\cdot\sqrt{2}}{3}$ Minimum Value: $0$
85de5956-0bf2-4223-96e5-7ef262790fe9
algebra
false
null
For what values of $x$ and $y$ does the following expression attain the minimum possible value? $E = 5 \cdot x^2 + 9 \cdot y^2 - 12 \cdot x \cdot y - 6 \cdot x + 14$
The final answer: $x=3$, $y=2$
868594b4-04b6-4f77-abef-df1528a43633
precalculus_review
false
null
Evaluate $\tan\left(\arcsin\left(\frac{ 3 }{ 5 }\right)+\arccos\left(\frac{ 5 }{ 13 }\right)\right)$.
The final answer: $\tan\left(\arcsin\left(\frac{3}{5}\right)+\arccos\left(\frac{5}{13}\right)\right)=-\frac{63}{16}$
868d5f3c-4350-4fe7-b65b-161b591491ae
precalculus_review
false
null
Vertices of a triangle are at the points $A(-1,3)$, $B(3,0)$, and $C(8,12)$. Calculate the area of the triangle.
The final answer: $A=\frac{63}{2}$
877845fa-0d38-4fcf-8281-44fe62452bb9
precalculus_review
false
null
Find zeros of $f(x) = \sqrt[3]{2 \cdot x - 3} + \sqrt[3]{3 \cdot x + 2} - 3$
The final answer: $x=2$
877e3f76-3b61-4e49-8196-680ebce22030
multivariable_calculus
true

A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60^\circ$ with the horizontal. What is the maximum range? Round your answer to one decimal digit. The graph is shown here:
Answer: $22092.5$ m
87bef79a-5776-402a-9247-942662ea7739
integral_calc
true

Graph of $a(t)$ A bug is traveling along a straight path such that its acceleration, $a(t)$, in centimeters per second per second, for $0 \le t \le 12$ is given by the graph above. At $t=0$, the bug is traveling at a rate of $10$ centimeters per second. At what other time is the bug traveling at a rate of $10$ centimeters per second?
$t$ = $11$