uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
9d959d14-7b9a-4159-a162-048d3b44d728
integral_calc
false
null
Solve the integral: $$ \int \frac{ -8 \cdot \cos(-4 \cdot x)^3 }{ 5 \cdot \sin(-4 \cdot x)^9 } \, dx $$
$\int \frac{ -8 \cdot \cos(-4 \cdot x)^3 }{ 5 \cdot \sin(-4 \cdot x)^9 } \, dx$ = $C-\frac{2}{5}\cdot\left(\frac{1}{3}\cdot\left(\cot(4\cdot x)\right)^6+\frac{1}{4}\cdot\left(\cot(4\cdot x)\right)^4+\frac{1}{8}\cdot\left(\cot(4\cdot x)\right)^8\right)$
9d9a08e8-cb1b-4e73-bdb1-5c8f16ce0448
algebra
false
null
Find the zeros of the polynomial function with complex roots: $f(x) = 2 \cdot x^3 - 2 \cdot x^2 + 5 \cdot x - 5$.
$x$ = $1$, $i\cdot\sqrt{\frac{5}{2}}$, $-i\cdot\sqrt{\frac{5}{2}}$
9d9a2009-a680-4c90-b633-7abf18e2f9e0
differential_calc
false
null
Calculate the integral: $$ \int \frac{ 1 }{ \sqrt[4]{(x-1)^3 \cdot (x+2)^5} } \, dx $$
$\int \frac{ 1 }{ \sqrt[4]{(x-1)^3 \cdot (x+2)^5} } \, dx$ = $\frac{4}{3}\cdot\sqrt[4]{\frac{x-1}{x+2}}+C$
9e0bf1a0-877c-4582-bfb0-0f1dd3945485
sequences_series
false
null
For a sequence with the general term $x_{n} = \frac{ 3 \cdot n - 5 }{ 9 \cdot n + 4 }$, it is known that $\lim_{n \to \infty} \left(x_{n}\right) = \frac{ 1 }{ 3 }$. Find the number of points $x_{n}$ lying outside the open interval $\left(\frac{ 1 }{ 3 } - \frac{ 1 }{ 1000 }, \frac{ 1 }{ 3 } + \frac{ 1 }{ 1000 }\right)$.
The final answer: $703$
9e33d4d5-111e-40d8-947f-1e6745799fb6
algebra
false
null
Find two consecutive even numbers whose product is $624$. Use the method of factoring, the square root principle, or the Quadratic Formula.
The final answer: $24$, $26$, $-24$, $-26$
9e64c3be-6d67-467d-ba24-30c5fb0b90dc
integral_calc
true

Let $S$ be the region bounded by the graphs of $y = -\sin(\pi \cdot x)$ and $y = -x^3 + 4 \cdot x$, as shown in the figure above. Find the area of $S$.
The area of $S$ is $4$ units².
9e8c6804-bff6-4a53-9a3d-aafd24edb916
multivariable_calculus
false
null
Evaluate the integral $\int_{0}^1 \int_{x^3}^{x^2} (x+y) \, dy \, dx$ by reversing the order of integration.
The integral corresponding to the reversed order of integration: $\int_0^1\int_{\sqrt{y}}^{\sqrt[3]{y}}(x+y)dxdy$ The value of the given integral: $\frac{11}{140}$
9eaefe5e-2a89-4c91-8807-8a51a4682bd8
sequences_series
false
null
Find the Fourier series of the function $f(x) = \frac{ -1 }{ 2 } \cdot x$ in the interval $[-2,2]$.
The Fourier series is: $\sum_{n=1}^\infty\left(\frac{2\cdot(-1)^n}{\pi\cdot n}\cdot\sin\left(\frac{\pi\cdot n\cdot x}{2}\right)\right)$
9ed2cf0b-2cab-4481-8a1f-d82d0592618b
multivariable_calculus
false
null
Find the moment of inertia of one arch of the cycloid $x = 3 \cdot a \cdot \left(\frac{ t }{ 2 } - \sin\left(\frac{ t }{ 2 }\right)\right)$, $y = 3 \cdot a \cdot \left(1 - \cos\left(\frac{ t }{ 2 }\right)\right)$ relative to the x-axis.
Moment of Inertia: $\frac{1152}{5}\cdot a^3$
9eedef68-3b7f-472b-80eb-594924624379
precalculus_review
false
null
Find zeros of $f(x) = 2 \cdot x^4 - 13 \cdot x^3 + 24 \cdot x^2 - 13 \cdot x + 2$.
The final answer: $x_1=2+\sqrt{3}$, $x_2=2-\sqrt{3}$, $x_3=2$, $x_4=\frac{1}{2}$
9eee7969-14e8-4e46-af9e-f5abe22824c9
sequences_series
false
null
Let $P_{n}(x)$ be the n-th order Taylor polynomial of $f(x) = \cos(x)$ about $a = 0$. Find the minimum $n$ such that the approximation $f(x) \approx P_{n}(x)$ is accurate to within $0.00001$ for every value of $x$ satisfying $|x| \le 0.1$.
The final answer: $n=3$
9f291789-5366-4314-8c23-34f9d11ce96d
integral_calc
false
null
Compute the volume of the solid formed by rotating about the x-axis the area bounded by the axes and the parabola $x^{\frac{ 1 }{ 2 }}+y^{\frac{ 1 }{ 2 }}=3^{\frac{ 1 }{ 2 }}$.
Volume = $\pi\cdot\frac{9}{5}$
9f754564-1291-4160-9cb2-349689537534
differential_calc
false
null
Solve to four decimal places using Newton's method: $x^3 + (x + 1)^3 = 10^3$. Choose any initial guess $x_0$ that is not the exact root.
$x$ ≈ $x=7.4055$
a05cd0c6-c878-437a-8b28-5137e7036859
integral_calc
false
null
Compute the integral: $$ \int \frac{ 3 }{ 4 \cdot x^2 \cdot \sqrt{5 \cdot x^2-2 \cdot x+1} } \, dx $$
Answer is: $\frac{3}{4}\cdot\left(C-\sqrt{5+\frac{1}{x}^2-\frac{1\cdot2}{x}}-\ln\left(\left|\frac{1}{x}+\sqrt{5+\frac{1}{x}^2-\frac{1\cdot2}{x}}-1\right|\right)\right)$
a0840748-bc14-4a3b-b024-7db40ab0ae4a
differential_calc
false
null
Use implicit differentiation to find an equation of the tangent line to the curve $x^4 - x^3 \cdot y^2 - y^3 \cdot x + 5 \cdot y^4 = 17$ at the point $P(-2,-1)$.
The line tangent to the curve $x^4 - x^3 \cdot y^2 - y^3 \cdot x + 5 \cdot y^4 = 17$ at the point $(-2,-1)$ is: $y+1=-\frac{43}{30}\cdot(x+2)$
a0aa7803-36b6-4822-a264-43c4b180b36f
differential_calc
true

Given $m(x) = g(x)^2$, find $m'(-2)$ using the table below:
$m'(-2)$ = $-418$
a112f370-d3c2-4094-b750-8d9886059273
multivariable_calculus
true

Use the midpoint rule with $m=2$, $n=2$ to estimate $\int \int f(x,y) \, dx \, dy$, where the values of the function $f$ on $R = [8,10] \times [9,11]$ are given in the following table:
$\int \int f(x,y) \, dx \, dy$ is approximately: $21.3$
a14e11ca-bae3-4aa2-9e08-d7b73a0e3f5a
integral_calc
false
null
Calculate the integral: $$ \int_{-\sqrt{2}}^{\sqrt{2}} \frac{ 23 \cdot x^7+7 \cdot x^6-130 \cdot x^5-72 \cdot x^3-112 \cdot x^2+4 \cdot x+7 }{ x^2+4 } \, dx $$
$\int_{-\sqrt{2}}^{\sqrt{2}} \frac{ 23 \cdot x^7+7 \cdot x^6-130 \cdot x^5-72 \cdot x^3-112 \cdot x^2+4 \cdot x+7 }{ x^2+4 } \, dx$ = $7\cdot\arctan\left(\frac{1}{\sqrt{2}}\right)-\frac{392\cdot\sqrt{2}}{15}$
a1cfa2ef-8b1f-409b-bffe-7e18847ddd71
multivariable_calculus
false
null
Find the first derivative $y_{x}'$ of the function: $$ x = \arcsin\left(\frac{ t }{ \sqrt{1+t^2} }\right), \quad y = \arccos\left(\frac{ 1 }{ \sqrt{1+t^2} }\right), \quad t \ge 0 $$
$y_{x}'$ = $1$
a20500e2-a8d0-47d3-a626-99e954939c82
multivariable_calculus
true

The graph of the polar rectangular region $D$ is given. Express the region $D$ in polar coordinates.
1. The interval of $r$ is $[3,5]$ 2. The interval of $\theta$ is $\left[\frac{\pi}{4},\frac{5}{4}\cdot\pi\right]$
a2102909-944e-4b02-bcfb-74f3d7ebf95b
integral_calc
false
null
Compute the integral: $$ 3 \cdot \int x^{-8} \cdot \left(9+x^2\right)^{\frac{ 1 }{ 2 }} \, dx $$
$3 \cdot \int x^{-8} \cdot \left(9+x^2\right)^{\frac{ 1 }{ 2 }} \, dx$ = $C+\frac{2}{1215}\cdot\left(1+\frac{9}{x^2}\right)^2\cdot\sqrt{1+\frac{9}{x^2}}-\frac{1}{729}\cdot\left(1+\frac{9}{x^2}\right)\cdot\sqrt{1+\frac{9}{x^2}}-\frac{1}{1701}\cdot\left(1+\frac{9}{x^2}\right)^3\cdot\sqrt{1+\frac{9}{x^2}}$
a2746873-77c8-49fc-97b9-98a814c7f0f1
algebra
false
null
Perform the indicated operation and express the result as a simplified complex number: $$ \frac{ 4+5 \cdot i }{ 4-5 \cdot i } $$
The final answer: $-\frac{9}{41}+\frac{40}{41}\cdoti$
a29dedad-3c66-4fb6-a142-1d724cd3f3f0
sequences_series
false
null
For which $p$ does the series $\sum_{n=1}^\infty \left(\frac{ p^{n^2} }{ 2^n }\right)$ converge?
Converges for : $p\le1$ (leave empty, if the series diverges for any $p$).
a328709a-3973-45ce-ac0c-956e736146fb
precalculus_review
false
null
A rental car company rents cars for a flat fee of $\$20$ and an hourly charge of $\$10.25$. Therefore, the total cost $C$ to rent a car is a function of the hours $t$ the car is rented plus the flat fee. 1. Write the formula for the function that models this situation. 2. Find the total cost to rent a car for 2 days and 7 hours. 3. Determine how long the car was rented if the bill is $\$432.73$. (Round to 2 decimal places)
1. The formula for the function is $C(t)$ = $10.25\cdot t+20$ 2. The total cost to rent a car is $ $583.75$ 3. The time of car rental in hours is $40.27$
a3940e7d-d8a4-47f5-a5b8-fd8850fea3e8
differential_calc
false
null
For the function $r = \frac{ 1 }{ 2 } \cdot \arctan\left(\frac{ 3 }{ \beta }\right) + \arccot\left(3 \cdot \cot\left(\beta\right)\right)$, find the derivative $r'(0)$ and $r'(2 \cdot \pi)$. Submit as your final answer: 1. $r'(0)$ 2. $r'(2 \cdot \pi)$
1. $r'(0)$ = $\frac{1}{6}$ 2. $r'(2 \cdot \pi)$ = $\frac{9+8\cdot\pi^2}{54+24\cdot\pi^2}$
a3b43f93-43b4-4b70-90f5-548457398733
multivariable_calculus
false
null
Find the tangential and normal components of acceleration if $\vec{r}(t) = \left\langle 6 \cdot t, 3 \cdot t^2, 2 \cdot t^3 \right\rangle$
$a_{T}$ = $\frac{12\cdot t^3+6\cdot t}{\sqrt{t^4+t^2+1}}$ ; $a_{N}$ = $\frac{6\cdot\sqrt{t^4+4\cdot t^2+1}}{\sqrt{t^4+t^2+1}}$
a3bd66e6-c94c-4f2f-8571-02904921c0b1
differential_calc
false
null
Find $\frac{ d y }{d x}$, given $y=\tan(2 \cdot v)$ and $v=\arctan(2 \cdot x-1)$.
The final answer: $\frac{dy}{dx}=\frac{2\cdot x^2-2\cdot x+1}{2\cdot\left(x-x^2\right)^2}$
a3d65618-5fb7-4674-96dd-b23aa1ecfe58
algebra
false
null
A sky diver jumps from a reasonable height above the ground. The air resistance she experiences is proportional to her velocity, and the constant of proportionality is $0.24$. It can be shown that the downward velocity of the sky diver at time $t$ is given by $$ v(t) = 180 \cdot \left(1 - e^{-0.24 \cdot t}\right) $$ where $t$ is measured in seconds and $v(t)$ is measured in feet per second. 1. Find the initial velocity of the sky diver. 2. Find the velocity after $4$ seconds (round your answer to one decimal place). 3. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of this sky diver. (round your answer to the nearest whole number).
1. The initial velocity of the sky diver is $0$. 2. The velocity after $4$ seconds is $111.1$. 3. The terminal velocity of the sky diver is $180$.
a3d66c89-c806-451b-8a24-006d0d179cf7
algebra
false
null
Determine the point(s) where the line $y = m \cdot x$ intersects the circle $x^2 + y^2 = 4$.
The final answer: $P\left(\sqrt{\frac{4}{1+m^2}},\sqrt{\frac{4\cdot m^2}{1+m^2}}\right)$, $P\left(-\sqrt{\frac{4}{1+m^2}},-\sqrt{\frac{4\cdot m^2}{1+m^2}}\right)$
a4a45e5a-b4ee-43fd-813e-09deaedcad2b
multivariable_calculus
true

Find the area of the region $D$:
The area is $1$
a4e37a73-6d8c-4d88-b69a-73d95d6eb24c
multivariable_calculus
false
null
Let $z = e^{1 - x \cdot y}$, $x = t^{\frac{ 1 }{ 3 }}$, $y = t^3$. Find $\frac{ d z }{ d t }$.
$\frac{ d z }{ d t }$ = $\frac{-(10\cdot e)}{3}\cdot e^{-t^3\cdot\sqrt[3]{t}}\cdot t^2\cdot\sqrt[3]{t}$
a5188065-d6c7-41b1-875b-d6511217d604
algebra
false
null
Consider the equation $25 + 8x + x^2 + y^2 - 10y = 0$. 1. Complete the square to write the equation in the standard form of a circle. 2. Identify the center and the radius of the circle. *Note: The standard form of a circle is $(x-a)^2 + (y-b)^2 = r^2$.*
1. Standard form: $(x+4)^2+(y-5)^2=16$ 2. Center $(a,b) = $ $P\left(-4,\ 5\right)$ 3. Radius $r = $ $4$
a5621a7e-3e22-421b-9363-cae4747d5c39
algebra
false
null
To convert from $x$ degrees Celsius to $y$ degrees Fahrenheit, we use the formula $f(x) = \frac{ 9 }{ 5 } \cdot x + 32$. Find the inverse function, if it exists. If it doesn't exist, write $\text{None}$.
Inverse function: $g(x)=\frac{5}{9}\cdot(x-32)$
a674c2d7-a34b-478c-a2db-568882e13a76
integral_calc
false
null
The chain of length $200$ rises up, winding on the winch. Compute the work of the weight force when lifting the chain, neglecting the size of the winch, if the running meter of the chain weighs $50$ kg.
$W$ = $-1000000$
a6a2e299-2748-478f-b471-75c40da9448b
algebra
false
null
Rewrite the quadratic expression $2 + z - 6 \cdot z^2$ by completing the square.
$2 + z - 6 \cdot z^2$ = $-6\cdot\left(z-\frac{1}{12}\right)^2+\frac{49}{24}$
a6d4ebc2-4ce7-401f-bafd-bb7e50fe8ee7
differential_calc
true

Use the graph of the function $y = f(x)$ shown here to find $\lim_{x \to 0} \left(f(x)\right)$, if possible. Estimate when necessary.
$\lim_{x \to 0} \left(f(x)\right)$ = None
a747b4a2-1af3-4522-83ed-b5d654c1b27d
sequences_series
false
null
Compute $\lim_{x \to 0}\left(\frac{ \cos(x)+2 }{ x^3 \cdot \sin(x) }-\frac{ 3 }{ x^4 }\right)$. Use the expansion of the function in the Taylor series.
The final answer: $\frac{1}{60}$
a77b8f2c-9d90-4790-8e66-137b7346b88c
integral_calc
false
null
Compute the integral: $$ \int \frac{ -\sin(2 \cdot x)^4 }{ \cos(2 \cdot x) } \, dx $$
$\int \frac{ -\sin(2 \cdot x)^4 }{ \cos(2 \cdot x) } \, dx$ = $\frac{1}{2}\cdot\left(C+\frac{1}{3}\cdot\left(\sin(2\cdot x)\right)^3+\sin(2\cdot x)-\frac{1}{2}\cdot\ln\left(\frac{\left|1+\sin(2\cdot x)\right|}{\left|\sin(2\cdot x)-1\right|}\right)\right)$
a80b7fea-f3d2-4cee-a773-0468cbb62864
integral_calc
true

Evaluate the integral of the functions graphed using the formula for areas of triangles, and subtracting the areas below the $x$-axis:
The final answer: $6$
a84a369a-f932-4e1b-81d4-3ba80b0674d9
integral_calc
false
null
Compute the integral: $$ \int \frac{ \sin(x)^2 \cdot \cos(x) }{ \sin(x) + \cos(x) } \, dx $$
$\int \frac{ \sin(x)^2 \cdot \cos(x) }{ \sin(x) + \cos(x) } \, dx$ = $C+\frac{1}{4}\cdot\left(\ln\left(1+\tan(x)\right)+\ln\left(\left|\cos(x)\right|\right)\right)-\frac{1}{4}\cdot\left(1+\tan(x)\right)\cdot\left(\cos(x)\right)^2$
a8f0eaa3-b9da-4124-8a5f-fb474f6d858d
differential_calc
false
null
Compute the limit: $$ \lim_{x \to 3} \left( \frac{ x }{ x-3 } - \frac{ 1 }{ \ln\left( \frac{ x }{ 3 } \right) } \right) $$
$\lim_{x \to 3} \left( \frac{ x }{ x-3 } - \frac{ 1 }{ \ln\left( \frac{ x }{ 3 } \right) } \right)$ = $\frac{1}{2}$
a8f44f48-ca13-4087-8c8f-a3a62866f729
differential_calc
false
null
Compute the derivative of the function $y = \sqrt[4]{\frac{ x^5 \cdot \left(5 \cdot x^2+1\right) }{ \sqrt[3]{2+3 \cdot x} }}$ by taking the natural log of both sides of the equation.
Derivative: $y'=\frac{50\cdot x^3+35\cdot x^2+14\cdot x+10}{30\cdot x^4+20\cdot x^3+12\cdot x^2+8\cdot x}\cdot\sqrt[4]{\frac{x^5\cdot\left(5\cdot x^2+1\right)}{\sqrt[3]{2+3\cdot x}}}$
a9032c60-861d-40cc-9d18-5703fc391b80
integral_calc
true

The data in the following table are used to estimate the average power output produced by Peter Sagan for each of the last $18$ sec of Stage $1$ of the $2012$ Tour de France. Average Power Output: Estimate the net energy used in kilojoules (kJ), noting that $1 \cdot W = 1 \cdot \frac{ J }{ s }$ and the average power output by Sagan during this time interval.
$17$ kJ.
a91364ec-3bee-4ace-a8e8-c9d004878f3f
sequences_series
false
null
Compute $\lim_{x \to 0}\left(\frac{ 3 \cdot \cos(x)+6 }{ 4 \cdot x^3 \cdot \sin(x) }-\frac{ 9 }{ 4 \cdot x^4 }\right)$. Use the expansion of the function in the Taylor series.
The final answer: $\frac{1}{80}$
a91e763c-994d-43f5-bee0-b4348dcf9e16
precalculus_review
false
null
Solve $2 \cdot z = |z| + 2 \cdot i$.
The final answer: $z=\frac{1}{\sqrt{3}}+i$
a92b0179-4b43-4f1b-844d-303642f4a04f
multivariable_calculus
false
null
Find $f(x,y) = e^{x^2} + \sqrt{y}$ at $P(0.1,9.1)$. Find the linear approximation for this function.
The final answer: 1. $f\left(x_{0},y_{0}\right)$: $4.02667079$ 2. $L(x,y)$: $4+\frac{1}{6}\cdot(y-9)$
a9475aa9-2408-495d-8644-3b969183c644
differential_calc
false
null
Compute the derivative of the implicit function: $$ 2 \cdot y^4 - \frac{ 3 \cdot x + 3 \cdot y }{ 2 \cdot x - 2 \cdot y } = 0 $$
$y'$: $y'=-\frac{y^2}{2\cdot\left(x^2-y^2\right)-x\cdot y}$
a984873a-826c-47e9-827c-626afd748f10
sequences_series
true

Find the Fourier series expansion of the function $f(x) = \begin{cases} x, & -\pi \le x < 0 \\ \pi, & 0 \le x \le \pi \end{cases}$ with the period $2 \cdot \pi$ on the interval $[-\pi, \pi]$.
The Fourier series is: $f(x)=\frac{\pi}{4}+\sum_{n=1}^\infty\left(\frac{1+(-1)^{n+1}}{\pi\cdot n^2}\cdot\cos(n\cdot x)+\frac{(-1)^{n+1}\cdot2+1}{n}\cdot\sin(n\cdot x)\right)$
a9c9f912-3c8e-4269-b099-4025c1d4eabb
integral_calc
false
null
Compute the integral: $$ \int \frac{ 2 \cdot x+\sqrt{x-2} }{ \sqrt[4]{x-2}+\sqrt[4]{(x-2)^3} } \, dx $$
$\int \frac{ 2 \cdot x+\sqrt{x-2} }{ \sqrt[4]{x-2}+\sqrt[4]{(x-2)^3} } \, dx$ = $C+20\cdot\sqrt[4]{x-2}+\frac{8\cdot1}{5}\cdot\sqrt[4]{x-2}^5-20\cdot\arctan\left(\sqrt[4]{x-2}\right)-\frac{1\cdot4}{3}\cdot\sqrt[4]{x-2}^3$
a9dffc8e-7ced-4002-b02a-9baebbe9603d
precalculus_review
false
null
Solve $\sqrt{3 \cdot x^2+5 \cdot x+8}-\sqrt{3 \cdot x^2+5 \cdot x+1}=1$.
The final answer: $x=-\frac{8}{3} \lor x=1$
aa1d7802-dd5b-476c-b14f-4a42e7c3e978
algebra
false
null
Find the zeros of the polynomial function with complex roots: $f(x) = 2 \cdot x^3 + 4 \cdot x^2 + 3 \cdot x + 6$.
$x$ = $-i\cdot\sqrt{\frac{3}{2}}$, $i\cdot\sqrt{\frac{3}{2}}$, $-2$
aaa1aca4-7a50-4e00-8119-c633ec60663a
differential_calc
false
null
For the function $y = \frac{ x }{ x^2 - 1 }$ find the derivative $y^{(n)}$.
The General Form of the Derivative of $y = \frac{ x }{ x^2 - 1 }$: $y^{(n)}=\frac{1}{2}\cdot(-1)^n\cdot\left(n!\right)\cdot\left((x+1)^{-(n+1)}+(x-1)^{-(n+1)}\right)$
aaf96d92-2e6d-4d51-9302-ebdab0643835
integral_calc
false
null
Compute the integral: $$ \int \frac{ 4 \cdot x-\sqrt[3]{36 \cdot x^2}-\sqrt[6]{6 \cdot x} }{ x \cdot \left(1+\sqrt[3]{6 \cdot x}\right) } \, dx $$
$\int \frac{ 4 \cdot x-\sqrt[3]{36 \cdot x^2}-\sqrt[6]{6 \cdot x} }{ x \cdot \left(1+\sqrt[3]{6 \cdot x}\right) } \, dx$ = $C+5\cdot\ln\left(\left|1+\sqrt[6]{6\cdot x}^2\right|\right)+\sqrt[6]{6\cdot x}^4-5\cdot\sqrt[6]{6\cdot x}^2-6\cdot\arctan\left(\sqrt[6]{6\cdot x}\right)$
ab489b92-5b36-40ad-9a82-491fad3195f7
differential_calc
false
null
Given $y = 3 \cdot x^5 + 10 \cdot x^4 - 20$, find where the function is 1. concave up, 2. concave down, and 3. point(s) of inflection.
1. Concave up: $(-2,0)$, $(0,\infty)$ 2. Concave down: $(-\infty,-2)$ 3. Point(s) of Inflection: $P(-2,44)$
ab60fd32-4edd-4d98-9274-20131190ef32
integral_calc
false
null
Compute the integral: $$ \int \frac{ x^3 }{ \sqrt{x^2+x+1} } \, dx $$
$\int \frac{ x^3 }{ \sqrt{x^2+x+1} } \, dx$ = $\left(\frac{1}{3}\cdot x^2-\frac{5}{12}\cdot x-\frac{1}{24}\right)\cdot\sqrt{x^2+x+1}+\frac{7}{16}\cdot\ln\left(\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right|\right)+C$
ab849658-cfda-452a-9ade-f2e14d96048a
integral_calc
false
null
Compute the integral: $$ \int \frac{ -3 }{ e^{4 \cdot x} + \sqrt{1 + e^{8 \cdot x}} } \, dx $$
$\int \frac{ -3 }{ e^{4 \cdot x} + \sqrt{1 + e^{8 \cdot x}} } \, dx$ = $C-\frac{1}{4}\cdot\left(\frac{3}{e^{4\cdot x}+\sqrt{1+e^{8\cdot x}}}+3\cdot\ln\left(\frac{e^{4\cdot x}+\sqrt{1+e^{8\cdot x}}-1}{1+e^{4\cdot x}+\sqrt{1+e^{8\cdot x}}}\right)\right)$
aba7e397-b652-4286-99f3-01d44606e733
sequences_series
false
null
Since $1 + x^3 + x^6 + \cdots + x^{3 \cdot n} + \cdots = \frac{ 1 }{ 1 - x^3 }$, when $|x| < 1$, then find the sum of the series: $$ \sum_{n=1}^\infty \left(3 \cdot n \cdot x^{3 \cdot n-1}\right) $$
The final answer: $\frac{3\cdot x^2}{\left(1-x^3\right)^2}$
ac4b6e12-42b6-4dbe-a5fd-4258b6db282b
differential_calc
false
null
Find the derivative of $y = x \cdot \sin(x) + 2 \cdot x \cdot \cos(x) - 2 \cdot \sin(x) + \ln(\sin(x)) + c^2$.
The final answer: $y'=\frac{\left(\sin(x)\right)^2+x\cdot\sin(x)\cdot\cos(x)-2\cdot x\cdot\left(\sin(x)\right)^2-\cos(x)}{\sin(x)}$
ac5571b3-1a5f-4cb5-b874-0ec90e7dc14b
algebra
false
null
Evaluate the expression $\frac{ (3+i)^2 }{ (1+2 \cdot i)^2 }$ and write the result as a simplified complex number.
$\frac{ (3+i)^2 }{ (1+2 \cdot i)^2 }$ = $-2\cdoti$
ace5f20b-07ce-4e6f-ac92-1de254bede66
precalculus_review
false
null
Use properties of logarithms to write the expression as a sum, difference, and/or product of logarithms: $$ \log_{4}\left(\frac{ \sqrt[3]{x \cdot y} }{ 64 }\right) $$
$\log_{4}\left(\frac{ \sqrt[3]{x \cdot y} }{ 64 }\right)$ = $-3+\frac{1}{3}\cdot\log_4(x)+\frac{1}{3}\cdot\log_4(y)$
ad240384-461f-42ca-bfb9-6227380f6674
precalculus_review
false
null
Find the domain of the function $f(x) = \arccos\left(\frac{ 3 }{ 4+2 \cdot \sin(x) }\right)$
The final answer: $-\frac{\pi}{6}+2\cdot k\cdot\pi\le x\le\frac{7\cdot\pi}{6}+2\cdot k\cdot\pi$
ad9dc540-5423-4bf8-86c4-a43e8a8dcdc7
sequences_series
false
null
Given that $\frac{ 1 }{ 1-x } = \sum_{n=0}^\infty x^n$, use term-by-term differentiation or integration to find a power series for the function $f(x) = \ln\left(1+x^2\right)$ centered at $x=0$.
$\ln\left(1+x^2\right)$ = $\sum_{n=0}^\infty\left((-1)^n\cdot\frac{x^{2\cdot n}}{n+1}\cdot x^2\right)$
ae0786f8-f333-4c38-acea-8be761157570
differential_calc
false
null
Find the derivative of the function: $y = -3 \cdot x^{\sqrt[3]{2 \cdot x}}$
$\frac{ d y }{d x}$ = $-\left(\frac{3\cdot\sqrt[3]{2}}{x^{\frac{2}{3}}}+\frac{\sqrt[3]{2}\cdot\ln(x)}{x^{\frac{2}{3}}}\right)\cdot x^{\sqrt[3]{2}\cdot\sqrt[3]{x}}$
ae2e969d-3eb4-4b7d-aeb1-9816a02b2670
integral_calc
true

Graph of $f$: The function $g$ is defined as $g(x) = 2 \cdot x^2 + \int_{-1}^{x^2} f(t) \, dt$ on $[-2,1]$. The graph of $f$ consists of four line segments and a semi-circle, and is shown above. What is the absolute maximum of $g$ on the interval $[-2,1]$?
The absolute maximum of $g$ on the interval $[-2,1]$ is $1+\frac{ \pi }{ 4 }$.
ae7253eb-638d-404d-8764-16d3eca93f52
integral_calc
false
null
Compute the integral: $$ \int \frac{ 1 }{ \left(\cos(2 \cdot x)\right)^3 } \, dx $$
$\int \frac{ 1 }{ \left(\cos(2 \cdot x)\right)^3 } \, dx$ = $C+\frac{\sin(2\cdot x)}{4\cdot\left(\cos(2\cdot x)\right)^2}+\frac{1}{4}\cdot\ln\left(\left|\tan\left(\frac{1}{2}\cdot\left(2\cdot x+\frac{\pi}{2}\right)\right)\right|\right)$
aee39c3c-776c-45db-a4b1-78f279287461
integral_calc
false
null
Compute the volume of the solid formed by rotating about the x-axis the area bounded by the axes and the parabola $x^{\frac{ 1 }{ 2 }}+y^{\frac{ 1 }{ 2 }}=2^{\frac{ 1 }{ 2 }}$.
Volume = $\frac{8\cdot\pi}{15}$
af144f31-5706-4ad7-84ab-94a14799bbb6
precalculus_review
false
null
Find all values of $x$ that satisfy the following equation: $$ \left|\left(x^4-4\right)-\left(x^2+2\right)\right|=\left|x^4-4\right|-\left|x^2+2\right| $$
The final answer: $|x|\ge\sqrt{3}$
af573af8-742d-47e3-9086-1c954a95c86b
multivariable_calculus
false
null
Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z) = x + y + z$ subject to the constraint $\frac{ 1 }{ x }+\frac{ 1 }{ y }+\frac{ 1 }{ z }=1$.
Minimum: $1$ Maximum: $9$
af740483-5226-4f0a-b027-4762d47d868b
differential_calc
true

Use the graph of the function $y = g(x)$ shown here to find $\lim_{x \to 0^{+}}\left(g(x)\right)$, if possible. Estimate when necessary.
$\lim_{x \to 0^{+}}\left(g(x)\right)$ = $0$
af865556-4ec7-4cd3-8fff-592c30074325
integral_calc
true

Let $R$ be the shaded region bounded by the graphs of $y=\frac{ 1 }{ x+2 }$ and $y=-\frac{ 1 }{ 2 } \cdot x+3$, as shown above. Find the volume of the solid generated when $R$ is rotated about the vertical line $x=-3$.
The volume of the solid is $292.097$ units³.
afb51ba2-1ec2-4e8b-b6ca-eee46a61357f
differential_calc
false
null
Make full curve sketching of $y = \frac{ 1 }{ 2 } \cdot \ln\left(\left|\frac{ x-4 }{ x+4 }\right|\right)$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-\infty,-4)\cup(-4,4)\cup(4,\infty)$ 2. Vertical asymptotes $x=-4$, $x=4$ 3. Horizontal asymptotes $y=0$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(-\infty,-4)$, $(-4,0)$ 6. Intervals where the function is decreasing $(-4,4)$ 7. Intervals where the function is concave up $(4,\infty)$, $(-\infty,-4)$ 8. Intervals where the function is concave down $(0,4)$, $(4,\infty)$ 9. Points of inflection $P(0,0)$
afc947d1-b4ea-4c8e-9540-0fc72f85b060
algebra
false
null
Solve the following equation for $x$: $3 \cdot x - (x - 4) = 10 + 5 \cdot (2 \cdot x + 2)$
$x$ = $-2$
afd775c9-9303-4cfc-a781-3399caf2e0b1
differential_calc
true

Use the following figure to find the indicated derivatives, if they exist (enter 'undefined' in case, if the derivative doesn't exist): Let $h(x) = f(x) \cdot g(x)$. Find: 1. $h'(1)$ 2. $h'(3)$ 3. $h'(4)$
1. $h'(1)$ = $2$ 2. $h'(3)$ = None 3. $h'(4)$ = $2.5$
afeb0054-83bd-4632-a3f9-8cf9685452d7
multivariable_calculus
false
null
The integral has been converted to polar coordinates. Verify that the identity is true and choose the easiest way to evaluate the integral, in rectangular or polar coordinates: $$ \int_{0}^1 \int_{x^2}^x \frac{ y }{ \sqrt{x^2+y^2} } \, dy \, dx = \int_{0}^{\frac{ \pi }{ 4 }} \int_{0}^{\sec(\varphi) \cdot \tan(\varphi)} r \cdot \sin(\varphi) \, dr \, d\varphi $$
$I$ = $\frac{1}{6}\cdot\left(2-\sqrt{2}\right)$
b031545d-ffe2-41b9-ae2f-5c5e1b989168
differential_calc
false
null
The position function of a ball dropped from the top of a $200$-meter tall building is given by $s(t) = 200 - 4.9 \cdot t^2$, where position $s$ is measured in meters and time $t$ is measured in seconds. Compute the average velocity of the ball over the given time intervals. Round your answer to eight significant digits: 1. $[4.99,5]$ 2. $[5,5.01]$ 3. $[4.999,5]$ 4. $[5,5.001]$
1. $-48.951000$ m/sec. 2. $-49.049000$ m/sec. 3. $-48.995100$ m/sec. 4. $-49.004900$ m/sec.
b04b5d6e-8250-4931-b2cd-f93c3b884ea5
differential_calc
true

Using the graph, find each limit: 1. $\lim_{x \to -1}\left(f(x)\right)$ 2. $\lim_{x \to 1}\left(f(x)\right)$ 3. $\lim_{x \to 0^{+}}\left(f(x)\right)$ 4. $\lim_{x \to 2}\left(f(x)\right)$
1. $\lim_{x \to -1}\left(f(x)\right)$ = None 2. $\lim_{x \to 1}\left(f(x)\right)$ = $1$ 3. $\lim_{x \to 0^{+}}\left(f(x)\right)$ = $0$ 4. $\lim_{x \to 2}\left(f(x)\right)$ = None
b0d28b67-d169-4f97-9f81-a001177c77df
algebra
true

Use the graph to write an equation for the function:
$f(x)$ = $-8\cdot\frac{(x-3)}{(x+3)\cdot(x-4)}$
b0f6581a-bda8-4027-96db-3dfb44273449
multivariable_calculus
false
null
Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.) $$ f(x,y) = \frac{ A \cdot x + B \cdot y }{ C \cdot x + D \cdot y } $$
$f_{xx}(x,y)$ = $\frac{2\cdot C\cdot(B\cdot C-A\cdot D)\cdot y}{(C\cdot x+D\cdot y)^3}$ $f_{xy}(x,y)$ = $f_{yx}(x,y)$ = $\frac{-(B\cdot C-A\cdot D)\cdot(C\cdot x-D\cdot y)}{(C\cdot x+D\cdot y)^3}$ $f_{yy}(x,y)$ = $-2\cdot D\cdot\frac{B\cdot C\cdot x-A\cdot D\cdot x}{(C\cdot x+D\cdot y)^3}$
b1cbb170-d4d2-4f07-81f3-ee4094350ade
integral_calc
false
null
Compute the integral: $$ \int \frac{ 3 \cdot x+\sqrt[3]{9 \cdot x^2}+\sqrt[6]{3 \cdot x} }{ x \cdot \left(4+\sqrt[3]{3 \cdot x}\right) } \, dx $$
$\int \frac{ 3 \cdot x+\sqrt[3]{9 \cdot x^2}+\sqrt[6]{3 \cdot x} }{ x \cdot \left(4+\sqrt[3]{3 \cdot x}\right) } \, dx$ = $C+3\cdot\arctan\left(\frac{\sqrt[6]{3}}{2}\cdot\sqrt[6]{x}\right)+36\cdot\ln\left(\left|4+\sqrt[3]{3}\cdot\sqrt[3]{x}\right|\right)+\frac{\left(3\cdot3^{\frac{2}{3}}\right)}{2}\cdot x^{\frac{2}{3}}-9\cdot\sqrt[3]{3}\cdot\sqrt[3]{x}$
b1d83dc5-da1a-4559-b8f4-c8a0ac9c7e7d
multivariable_calculus
false
null
The integral has been converted to polar coordinates. Verify that the identity is true and choose the easiest way to evaluate the integral, in rectangular or polar coordinates. $$ \int_{0}^1 \int_{x^2}^x \frac{ 1 }{ \sqrt{x^2+y^2} } \, dy \, dx = \int_{0}^{\frac{ \pi }{ 4 }} \int_{0}^{\tan(\varphi) \cdot \sec(\varphi)} 1 \, dr \, d \varphi $$
$I$ = $\sqrt{2}-1$
b26a668e-b0d8-497f-be3e-9e980702227d
integral_calc
true

The region bounded by the parabola $y^2 = 2 \cdot p \cdot x$ and the line AB is revolved about the Y-axis. The line AB passes through the focus of the parabola and is perpendicular to the X-axis. Find the volume of this solid of revolution using integration with respect to $y$. Use $p = 6$.
Volume: $\frac{432}{5}\cdot\pi$
b27a2ed1-91ab-4864-b50e-4aebf48d87b1
differential_calc
false
null
Consider a wire 4 ft long cut into two pieces. One piece forms a circle with radius $r$ and the other forms a square of side $x$. Choose $x$ to maximize the sum of their areas.
$x$ = $0$
b27c8456-96d3-4d5b-891a-f756b95ca624
integral_calc
true

Let $R$ be the region enclosed by the graphs of $f(x) = 1 - \cos(3 \cdot x)$ and $g(x) = e^{0.3 \cdot x}$, as shown in the figure above. Find the volume of the solid generated when $R$ is revolved about the $x$-axis.
The volume of the solid is $2.655$ units³.
b27efb6c-ef58-438a-9b61-007ea74acd47
multivariable_calculus
true

Two children are playing with a ball. The girl throws the ball to the boy. The ball travels in the air, moves $3$ ft to the right, and falls $5$ ft away from the girl (see the following figure). If the plane that contains the trajectory of the ball is perpendicular to the ground, find its equation.
The equation of the plane: $3\cdot y-5\cdot x=0$ (If it is not perpendicular, just click submit.)
b28ab25c-39a1-415e-8c6c-5a8cef4b18f1
algebra
false
null
Solve the following equations: 1. $\frac{ 2 }{ 3 } (6 x+18)=20$ 2. $\frac{ 6 }{ 5 } (10 z+15)=-6$ 3. $\frac{ 3 z }{ 8 }-4=5$ 4. $\frac{ 1 }{ 2 } x+\frac{ 3 }{ 4 }=-\frac{ 7 }{ 8 }$ 5. $3\frac{1}{4} p+4 \left(\frac{ 3 }{ 4 } p-12\right)=-79.25$ 6. $3\frac{1}{2} w-2 \left(\frac{ 5 }{ 6 } w+2\right)=-\frac{ 1 }{ 3 }$
The solutions to the given equations are: 1. $x=2$ 2. $z=-2$ 3. $z=24$ 4. $x=-\frac{ 13 }{ 4 }$ 5. $p=-5$ 6. $w=2$
b2e51a16-da23-4146-b609-b4083ae88786
precalculus_review
false
null
Use the Rational Zero Theorem to find all real zeros of the following polynomial: $p(x) = 2 \cdot x^3 - 5 \cdot x^2 + 9 \cdot x - 9$
The real zeros are $\frac{3}{2}$
b2f618b5-8496-4cb1-9cfa-bb7ec9d0cd99
precalculus_review
false
null
1. Find the inverse function of $f(x) = \sqrt[3]{x-4}$ 2. Find the domain of the inverse function 3. Find the range of the inverse function
1. The inverse function is: $x^3+4$ 2. The domain of the inverse function is: $(-\infty,\infty)$ 3. The range of the inverse function is: $(-\infty,\infty)$
b3072b54-bb84-41dd-b303-7dd7249ba64d
integral_calc
true

The region $R$ is the region in the first and second quadrants bounded by the graphs of $y = 5 \cdot \cos\left(\frac{ x^2 }{ 4 }\right)$ and $y = 2 + \sqrt[3]{x}$, as shown in the diagram above. Find the volume of the solid generated from rotating region $R$ about the horizontal line $y = -2$.
The volume of the solid is $336.509$ units³.
b318ad71-d185-4390-acca-0699ca019773
precalculus_review
false
null
Find zeros of $f(x) = \sin(x) + \sin(2 \cdot x) + 2 \cdot \sin(x) \cdot \sin(2 \cdot x) - 2 \cdot \cos(x) - \cos(2 \cdot x)$.
The final answer: $x_1=-\frac{\pi}{2}+2\cdot\pi\cdot n$, $x_2=-\frac{2\cdot\pi}{3}+2\cdot\pi\cdot n$, $x_3=\frac{2\cdot\pi}{3}+2\cdot\pi\cdot n$, $x_4=(-1)^n\cdot\frac{\pi}{6}+\pi\cdot n$
b3573d9a-dceb-44bb-bd9a-009f13c4cc13
integral_calc
false
null
Compute the integral: $$ \int \frac{ \tan(2 \cdot x) }{ \sqrt{\sin(2 \cdot x)^4+\cos(2 \cdot x)^4} } \, dx $$
$\int \frac{ \tan(2 \cdot x) }{ \sqrt{\sin(2 \cdot x)^4+\cos(2 \cdot x)^4} } \, dx$ = $C+\frac{1}{4}\cdot\ln\left(\sqrt{1+\tan(2\cdot x)^4}+\tan(2\cdot x)^2\right)$
b39f8c2e-5c3c-474e-a7e1-adce52e0feaf
differential_calc
true

The graph of the function $f$ is shown above. What are all values of $x$ at which $f$ has a jump discontinuity? [Image_0]
The function $f$ has a jump discontinuity at $x$ = $-2$
b3ccc40f-c39b-46f5-8e7a-93f91b06f532
multivariable_calculus
false
null
Let $u(x,y,z) = x \cdot y + y \cdot z + x \cdot z$, where $x = r \cdot \cos(\theta)$, $y = r \cdot \sin(\theta)$, and $z = r \cdot \theta$. Evaluate $\frac{\partial w}{\partial r}(r,\theta)$ and $\frac{\partial w}{\partial \theta}(r,\theta)$ for $r = 1$, $\theta = \frac{ 3 \cdot \pi }{ 2 }$, where $w(r,\theta) = u(x(r,\theta),y(r,\theta),z(r,\theta))$.
The final answer: $\frac{\partial w}{\partial r}(1,\frac{ 3 \cdot \pi }{ 2 })$ is equal to $-3\cdot\pi$ . $\frac{\partial w}{\partial \theta}(1,\frac{ 3 \cdot \pi }{ 2 })$ is equal to $\frac{3\cdot\pi}{2}-2$ .
b3f1345e-4df9-4e1e-b9f5-f0b644753869
sequences_series
false
null
Find the Fourier series of the function $u = \left| \frac{ \sin\left( \frac{ x }{ 2 } \right) }{ 2 } \right|$ in the interval $[-2 \cdot \pi,2 \cdot \pi]$.
The Fourier series is: $\frac{1}{\pi}+\sum_{k=1}^\infty\left(-\frac{2}{\pi\cdot\left(4\cdot k^2-1\right)}\cdot\cos(k\cdot x)\right)$
b414e258-7f9a-4c2a-aad3-5529aead66c2
sequences_series
false
null
Find the Fourier series of the function $\psi(x) = e^{-x}$ in the interval $(-2 \cdot \pi, 2 \cdot \pi)$.
The Fourier series is: $e^{-x}=\frac{\left(e^{2\cdot\pi}-e^{-2\cdot\pi}\right)}{\pi}\cdot\left(\frac{1}{4}+\sum_{n=1}^\infty\left(\frac{(-1)^n}{4+n^2}\cdot\left(2\cdot\cos\left(\frac{n}{2}\cdot x\right)+n\cdot\sin\left(\frac{n}{2}\cdot x\right)\right)\right)\right)$
b46190d9-ebed-4e4b-b32e-6167579d4c2b
differential_calc
false
null
If it takes $6$ years for an exponentially growing quantity to triple in size, then by what percentage does it increase every year? Round your answer to two decimal places, and omit the % sign.
The final answer: $20.09$
b4947d95-c61d-4939-9adb-119988a7c1c1
precalculus_review
false
null
1. Find the inverse function of $f(x) = x^2 - 4$, for $x \ge 0$. 2. Find the domain of the inverse function. 3. Find the range of the inverse function.
1. The inverse function is: $\sqrt{x+4}$ 2. The domain of the inverse function is: $x\ge-4$ 3. The range of the inverse function is: $y\ge0$
b55f6e2f-3e64-466f-9524-b9bcc1986c46
differential_calc
true

The graph of the function $f(x)$ is shown below. Determine the interval(s) where $\frac{ d f }{d x}>0$.
The final answer: $(1,4)$
b5c10639-0db9-4bd6-8b11-e245dac06e15
integral_calc
false
null
Solve the integral: $$ \int \frac{ 4 \cdot \cos(6 \cdot x)^3 }{ 9 \cdot \sin(6 \cdot x)^9 } \, dx $$
$\int \frac{ 4 \cdot \cos(6 \cdot x)^3 }{ 9 \cdot \sin(6 \cdot x)^9 } \, dx$ = $C-\frac{2}{27}\cdot\left(\frac{1}{3}\cdot\left(\cot(6\cdot x)\right)^6+\frac{1}{4}\cdot\left(\cot(6\cdot x)\right)^4+\frac{1}{8}\cdot\left(\cot(6\cdot x)\right)^8\right)$
b6943d35-373f-44b1-8886-587ed5656553
integral_calc
false
null
$\int \frac{ 7+2 \cdot x-4 \cdot x^2 }{ 2 \cdot x^2+x-3 } \, dx$
$\int \frac{ 7+2 \cdot x-4 \cdot x^2 }{ 2 \cdot x^2+x-3 } \, dx$ = $-2\cdot x+\ln\left(\left|2\cdot x^2+x-3\right|\right)+C$
b726f1ca-7edd-47ed-918f-b9fc63c3a1d9
integral_calc
false
null
Solve the integral: $$ \int \left(\frac{ x+1 }{ x-1 }\right)^{\frac{ 3 }{ 2 }} \, dx $$
$\int \left(\frac{ x+1 }{ x-1 }\right)^{\frac{ 3 }{ 2 }} \, dx$ = $C+\sqrt{\frac{x+1}{x-1}}\cdot(x-5)-3\cdot\ln\left(\left|\frac{\sqrt{x-1}-\sqrt{x+1}}{\sqrt{x-1}+\sqrt{x+1}}\right|\right)$