uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
b750bd34-f50c-493d-b569-d3bc6ab886f1
integral_calc
true

Let $Q$ be the region bounded by the graph of $x=\frac{ 2 }{ 1-y }$, the line $x=-1$, and the line $y=\frac{ 5 }{ 4 }$, as shown in the figure above. Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $Q$ is revolved about the line $x=-1$.
$V$ = $\int_{\frac{5}{4}}^3\left(\pi\cdot\left(\frac{2}{1-y}+1\right)^2\right)dy$
b75b8718-0c2d-4333-9d47-a9a7a16878ae
precalculus_review
false
null
Find all the solutions of the equation $1 + \left(\sin(x) - \cos(x)\right) \cdot \sin\left(\frac{ \pi }{ 4 }\right) = 2 \cdot \left(\cos\left(\frac{ 5 }{ 2 } \cdot x\right)\right)^2$ which satisfy the condition $\sin(6 \cdot x) < 0$.
The final answer: $x=\frac{5\cdot\pi}{16}+\pi\cdot k$
b775a64a-639f-497b-b064-ba7db40ab3ca
sequences_series
false
null
Using the series expansion for the function $(1+x)^m$, calculate approximately $\sqrt[3]{7}$ with an accuracy of 0.0001.
The final answer: $1.9129$
b78a35bf-86eb-4ed0-8899-09518687eaeb
algebra
false
null
Use the values of $f(x)$ listed in the table below to solve the equation $f^{-1}(x) = 5$ for $x$. | $x$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | $f(x)$ | $8$ | $0$ | $7$ | $4$ | $2$ | $6$ | $5$ | $3$ | $9$ | To find the solution, we need to find the value of $x$ such that $f(x) = 5$.
The solution is $x$ = $5$
b78b640e-2077-4261-8d0d-6af62d82047e
integral_calc
false
null
Compute the integral: $$ \int \sin(3 \cdot x)^6 \cdot \cos(3 \cdot x)^2 \, dx $$
Answer is: $\frac{1}{32}\cdot x-\frac{1}{32}\cdot\frac{1}{12}\cdot\sin(12\cdot x)-\frac{1}{8}\cdot\frac{1}{6}\cdot\frac{1}{3}\cdot\sin(6\cdot x)^3+\frac{1}{128}\cdot x-\frac{1}{128}\cdot\frac{1}{24}\cdot\sin(24\cdot x)+C$
b7a0b462-28e2-47c0-be0c-1c233c09fe99
precalculus_review
false
null
Simplify the expression $\tan(x)^2 + \sin(x) \cdot \csc(x)$ by writing it in terms of sines and cosines, then simplify. The final answer does not have to be in terms of sine and cosine only.
$\tan(x)^2 + \sin(x) \cdot \csc(x)$ = $\sec(x)^2$
b7a66b26-e0ab-4533-a404-db2f9afeb3b0
sequences_series
false
null
Suppose that $\lim_{n \to \infty}\left(\left|\frac{ a_{n+1} }{ a_{n} }\right|\right)=p$. For which values of $p$ must $\sum_{n=1}^\infty\left(2^n \cdot a_{n}\right)$ converge?
$|p|$ < $\frac{1}{2}$
b800fdc0-a9c8-47b9-b98f-9c4ec5811709
multivariable_calculus
false
null
Find the equation of an ellipse with the following conditions: 1. The ellipse is tangent to the y-axis at $(0,3)$. 2. The ellipse intersects the x-axis at $(3,0)$ and $(7,0)$. 3. The axes of the ellipse are parallel to the cartesian axes.
The final answer: $\frac{(x-5)^2}{25}+\frac{7\cdot(y-3)^2}{75}=1$
b82a9cc4-bafb-4dff-b474-ea2287346a3d
differential_calc
true

Find values of $a$ and $b$, making function continuous and differentiable at $x=1$. The graph is shown.
The $a$ and $b$ values are: $a=-4$, $b=2$
b84018c9-fd9f-4ef5-917a-9ed1849998ea
differential_calc
false
null
For the function $y = (4 - x)^3 \cdot (x + 1)^2$ specify the points where local maxima and minima of $y$ occur. 1. The point(s) where local maxima occur 2. The point(s) where local minima occur
1. The point(s) where local maxima occur: $P(1,108)$ 2. The point(s) where local minima occur: $P(-1,0)$
b887d056-ce73-4520-a35b-d59f1198f8a3
differential_calc
false
null
Compute the limit: $$ \lim_{x \to 4}\left(\frac{ x }{ x-4 }-\frac{ 1 }{ \ln\left(\frac{ x }{ 4 }\right) }\right) $$
$\lim_{x \to 4}\left(\frac{ x }{ x-4 }-\frac{ 1 }{ \ln\left(\frac{ x }{ 4 }\right) }\right)$ = $\frac{1}{2}$
b8a1a55a-f36b-4033-9813-55d603b2edd9
integral_calc
false
null
Compute the integral: $$ \int \frac{ -2 }{ e^{3 \cdot x} + \sqrt{1 + e^{6 \cdot x}} } \, dx $$
$\int \frac{ -2 }{ e^{3 \cdot x} + \sqrt{1 + e^{6 \cdot x}} } \, dx$ = $C-\frac{1}{3}\cdot\left(\frac{2}{e^{3\cdot x}+\sqrt{1+e^{6\cdot x}}}+2\cdot\ln\left(\frac{e^{3\cdot x}+\sqrt{1+e^{6\cdot x}}-1}{1+e^{3\cdot x}+\sqrt{1+e^{6\cdot x}}}\right)\right)$
b8e659f6-36d7-4648-9a18-b9a397fa9c13
multivariable_calculus
false
null
Evaluate the iterated integral: $$ \int_{e}^{e^2} \int_{\ln(u)}^2 \left(v + \ln(u)\right) \, dv \, du $$
$\int_{e}^{e^2} \int_{\ln(u)}^2 \left(v + \ln(u)\right) \, dv \, du$ = $e^2-\frac{e}{2}$
b9549494-f051-4d1b-891b-874e88c55728
precalculus_review
false
null
Find the product $C=\left(-\frac{ 2 }{ 3 }-\frac{ 1 }{ 2 } \cdot i\right) \cdot \left(\frac{ 1 }{ 5 }+\frac{ 4 }{ 5 } \cdot i\right)$.
The final answer: $C=\frac{4}{15}-\frac{19}{30}\cdot i$
b95c92b9-de56-4e8a-8b1a-c7cd1d375bf5
sequences_series
false
null
Find the Taylor series for $f(x) = \frac{ x }{ (1+x)^2 }$, centered at $x=0$. Write out the sum of the first four non-zero terms, followed by dots.
The final answer: $x-2\cdot x^2+3\cdot x^3-4\cdot x^4+\cdots$
b9ac8e90-d4b9-4750-906c-54109d1396d7
algebra
false
null
You inherit one hundred thousand dollars. You invest it all in three accounts for one year. The first account pays $4\%$ compounded annually, the second account pays $3\%$ compounded annually, and the third account pays $2\%$ compounded annually. After one year, you earn $\$3650$ in interest. If you invest five times the money in the account that pays $4\%$ compared to $3\%$, how much did you invest in each account?
The first account investment: $75000$ The second account investment: $15000$ The third account investment: $10000$
b9ba91e6-fd9d-4131-9c7d-ba92a0947e30
differential_calc
false
null
Given $y = 3 \cdot x^5 + 20 \cdot x^4 + 40 \cdot x^3 + 100$ find where the function is 1. concave up, 2. concave down, and 3. point(s) of inflection.
1. Concave up: $(0,\infty)$ 2. Concave down: $(-\infty,-2)$, $(-2,0)$ 3. Point(s) of Inflection: $P(0,100)$
b9cdefb2-0696-45ba-a3d0-d4804c70d4f0
integral_calc
false
null
Calculate the integral: $$ \int_{-\sqrt{2}}^{\sqrt{2}} \frac{ 2 \cdot x^7+3 \cdot x^6-10 \cdot x^5-7 \cdot x^3-12 \cdot x^2+x+1 }{ x^2+2 } \, dx $$
$\int_{-\sqrt{2}}^{\sqrt{2}} \frac{ 2 \cdot x^7+3 \cdot x^6-10 \cdot x^5-7 \cdot x^3-12 \cdot x^2+x+1 }{ x^2+2 } \, dx$ = $\frac{5\cdot\pi-64}{10\cdot\sqrt{2}}$
b9fdcdf9-caa8-482e-b135-c2073d4e0c25
differential_calc
false
null
Make full curve sketching of $y = \sqrt[3]{x^2 - \frac{ x^3 }{ 8 }}$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes None 3. Horizontal asymptotes None 4. Slant asymptotes $y=-\frac{1}{2}\cdot x+\frac{4}{3}$ 5. Intervals where the function is increasing $\left(0,\frac{16}{3}\right)$ 6. Intervals where the function is decreasing $(-\infty,0)$, $\left(\frac{16}{3},8\right)$, $(8,\infty)$ 7. Intervals where the function is concave up $(8,\infty)$ 8. Intervals where the function is concave down $(-\infty,0)$, $(0,8)$ 9. Points of inflection $P(8,0)$
ba021e0e-5fd6-428c-91e4-fcd26bec895f
differential_calc
false
null
Consider a bank investment: The initial investment is $\$10000$. After $25$ years, the investment has tripled to $\$30000$. Use Newton’s method to determine the interest rate if the interest was compounded annually.
$4.492$%
ba6d988a-5f01-4dfe-a6c1-f85fb7f22f01
precalculus_review
false
null
Simplify the expression $\sin(x) \cdot \left(\csc(x)-\sin(x)\right)$ by writing it in terms of sines and cosines, then simplify. The final answer does not have to be in terms of sine and cosine only.
$\sin(x) \cdot \left(\csc(x)-\sin(x)\right)$ = $\cos(x)^2$
baea3a26-3788-4b32-b19e-931a1c4bed1d
sequences_series
false
null
Find the Fourier series of the function $\psi(x) = 2 \cdot e^{-2 \cdot x}$ in the interval $(-\pi, \pi)$.
The Fourier series is: $2\cdot e^{-2\cdot x}=\frac{\left(e^{2\cdot\pi}-e^{-2\cdot\pi}\right)}{\pi}\cdot\left(\frac{1}{2}+\sum_{n=1}^\infty\left(\frac{2\cdot(-1)^n\cdot\left(2\cdot\cos(n\cdot x)+n\cdot\sin(n\cdot x)\right)}{4+n^2}\right)\right)$
bba192e9-a029-4393-a68e-e42c6444ae52
differential_calc
false
null
Evaluate the limit: $$ \lim_{x \to 0}\left(\frac{ \ln\left(1+x+x^2\right)+\ln\left(1-x+x^2\right) }{ x^2 }\right) $$
$\lim_{x \to 0}\left(\frac{ \ln\left(1+x+x^2\right)+\ln\left(1-x+x^2\right) }{ x^2 }\right)$ = $1$
bbe52c80-dc6a-4752-8fa2-e540fdd12adb
algebra
false
null
Use the Rational Zero Theorem to find the real solution(s) of the equation: $x^4 + 2 \cdot x^3 - 4 \cdot x^2 - 10 \cdot x - 5 = 0$
By the Rational Zero Theorem, possible rational zeros of the function are: $1$, $-1$, $5$, $-5$ $x$ = $\sqrt{5}$, $-\sqrt{5}$, $-1$
bc1290d0-681b-468e-b494-3a277399c84f
sequences_series
false
null
Find the interval of convergence of the series $\sum_{n=1}^\infty \frac{ 3 \cdot x^n }{ n \cdot 7^n }$. (Use interval notation)
The final answer: $[-7,7)$
bc24c3db-73a9-4f4d-84c9-58dcebd518f9
algebra
false
null
Solve the following equations: 1. $8 s - (8 + 6 s) = 20$ 2. $34 = 2 x + 8 (x + 3)$ 3. $3 (x + 9) = 60$ 4. $2 (m - 8) = 12$ 5. $35 = 22 x - 12 x + 5$ 6. $6 (b + 8) = 54$ 7. $99 = 33 x + 3 (3 x + 5)$
The solutions to the given equations are: 1. $s=14$ 2. $x=1$ 3. $x=11$ 4. $m=14$ 5. $x=3$ 6. $b=1$ 7. $x=2$
bc3c0d6d-ed63-46d2-9537-1d1c3ad95d1c
multivariable_calculus
false
null
Evaluate the triple integral $\int_{0}^1{\int_{1}^2{\int_{z}^{z+1}{(y+1) d x} d y} d z}$ by using the transformation $u = x - z$, $v = 3 \cdot y$, and $w = \frac{ z }{ 2 }$.
$I$ = $\frac{5}{2}$
bc5b6d16-0655-4241-850e-6c54cc736d93
sequences_series
false
null
Consider the function $y = \left| \cos(2 \cdot x) \right|$. 1. Find the Fourier series of the function. 2. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty\frac{ (-1)^n }{ 4 \cdot n^2-1 }$. 3. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty\frac{ 1 }{ 4 \cdot n^2-1 }$.
1. The Fourier series is $\frac{2}{\pi}-\frac{4}{\pi}\cdot\sum_{n=1}^\infty\left(\frac{(-1)^n}{\left(4\cdot n^2-1\right)}\cdot\cos(4\cdot n\cdot x)\right)$ 2. The sum of the series $\sum_{n=1}^\infty\frac{ (-1)^n }{ 4 \cdot n^2-1 }$ is $\frac{(2-\pi)}{4}$ 3. The sum of the series $\sum_{n=1}^\infty\frac{ 1 }{ 4 \cdot n^2-1 }$ is $\frac{1}{2}$
bcc5b742-cc7b-42d6-98eb-9db904ab8078
multivariable_calculus
false
null
Evaluate $\int\int\int_{E}{\left(x^3+y^3+z^3\right) d V}$, where $E$ is the region defined by: $$ E = \left\{(x,y,z) | 0 \le x \le 2, 0 \le y \le 2 \cdot x, 0 \le z \le 4-x-y\right\} $$
$I$ = $\frac{112}{5}$
be0450d9-d002-494c-b831-25492d662296
sequences_series
false
null
Use the substitution $(b+x)^r = (b+a)^r \cdot \left(1 + \frac{ x-a }{ b+a } \right)^r$ in the binomial expansion to find the Taylor series of the function $\sqrt{x^2+2}$ with the center $a=0$.
$\sqrt{x^2+2}$ = $\sum_{n=0}^\infty\left(2^{\frac{1}{2}-n}\cdot C_{\frac{1}{2}}^n\cdot x^{2\cdot n}\right)$
be5b328d-cd61-45c8-97bf-93d2e3f5c525
algebra
false
null
Find the solution to the following inequality and express it in interval notation: $$8 (x-9) (x+5) (x-3) > 0$$
The solution set to the inequality is $\left(-5,\ 3\right)\cup\left(9,\ \infty\right)$
be642fd8-0fc8-450f-867d-eea4c7765a27
differential_calc
false
null
For what values of $a$, $b$, and $c$ does the curve $y = a \cdot x^4 + b \cdot x^3 + c \cdot x^2 + e \cdot x + f$ have points of inflection?
The final answer: $3\cdot b^2-8\cdot a\cdot c>0$
be8194d4-6693-48d6-a382-70e25ddc9b86
precalculus_review
false
null
Simplify the expression $\left(1+\tan\left(\theta\right)\right)^2-2 \cdot \tan\left(\theta\right)$ by writing it in terms of sines and cosines, then simplify. The final answer does not have to be in terms of sine and cosine only.
$\left(1+\tan\left(\theta\right)\right)^2-2 \cdot \tan\left(\theta\right)$ = $\sec\left(\theta\right)^2$
bea9777f-c66e-48e1-b32b-f2795b3f8c4f
integral_calc
false
null
Compute the integral: $$ \int \frac{ -12 }{ \sin(6 \cdot x)^6 } \, dx $$
$\int \frac{ -12 }{ \sin(6 \cdot x)^6 } \, dx$ = $C+2\cdot\cot(6\cdot x)+\frac{2}{5}\cdot\left(\cot(6\cdot x)\right)^5+\frac{4}{3}\cdot\left(\cot(6\cdot x)\right)^3$
bf49a8b7-ff89-4c97-86c5-94549ff3ce80
sequences_series
true

Find the Fourier series expansion of the function $f(x) = \begin{cases} -x, & -\pi < x \le 0 \\ \frac{ x^2 }{ \pi }, & 0 < x \le \pi \end{cases}$ with the period $2 \cdot \pi$ on the interval $[-\pi,\pi]$.
The Fourier series is: $f(x)=\frac{5\cdot\pi}{12}+\sum_{n=1}^\infty\left(\frac{(-1)^n\cdot3-1}{\pi\cdot n^2}\cdot\cos(n\cdot x)+\left(\frac{2}{\pi^2\cdot n^3}\cdot\left((-1)^n-1\right)\right)\cdot\sin(n\cdot x)\right)$
bf6ce9fb-0a58-4dab-8385-8e9e64099565
precalculus_review
false
null
Calculate $E = \frac{ 1 }{ \sin(10) } - \frac{ \sqrt{3} }{ \cos(10) }$.
The final answer: $E=4$
bf760c7e-8f0f-4e8f-8add-9a1541343d1a
multivariable_calculus
false
null
Find the equations of the planes below: 1. The plane through $P(2,2,1)$ perpendicular to the vector $\left\langle 1,0,-1 \right\rangle$ 2. The plane containing the line $\left\langle x,y,z \right\rangle = t \cdot \left\langle 1,2,3 \right\rangle$ and through the point $P(2,1,-1)$ 3. The plane containing the points $P(2,0,3)$, $P(0,4,1)$, $P(-1,3,3)$
1. $x-z=1$ 2. $-5\cdot x+7\cdot y-3\cdot z=0$ 3. $x+y+z=5$
bfd92140-56a4-4cd9-a0d4-c99aef34eb24
algebra
false
null
Use the Remainder Theorem to find the remainder when dividing $5 \cdot x^5 - 4 \cdot x^4 + 3 \cdot x^3 - 2 \cdot x^2 + x - 1$ by $x + 6$.
The remainder is $-44791$
bff02121-9696-4fd4-9951-072d213b75f0
differential_calc
false
null
Evaluate $\lim_{x \to 0^{+}} \left( \left( \frac{ \tan(x) }{ x } \right)^{\frac{ 1 }{ x^2 }} \right)$ using l'Hospital's Rule.
$\lim_{x \to 0^{+}} \left( \left( \frac{ \tan(x) }{ x } \right)^{\frac{ 1 }{ x^2 }} \right)$ = $e^{\frac{1}{3}}$
c1776c95-1585-4f95-8a20-535567d00fae
multivariable_calculus
false
null
Evaluate $\int\int\int_{E}{z \, dV}$, where $E$ is the region defined by: $$ E = \left\{ (x,y,z) \mid -y \le x \le y, \, 0 \le y \le 1, \, 0 \le z \le 1-x^4-y^4 \right\} $$
$I$ = $\frac{113}{450}$
c1c7b5c8-ba37-4871-9cc7-79a575e299a1
integral_calc
false
null
Calculate the integral: $$ \int \frac{ 3 \cdot x + 4 }{ \left( x^2 + 1 \cdot x + 7 \right)^2 } \, dx $$
$\int \frac{ 3 \cdot x + 4 }{ \left( x^2 + 1 \cdot x + 7 \right)^2 } \, dx$ = $\frac{\frac{5}{27}\cdot x-\frac{38}{27}}{\frac{27}{4}+\left(x+\frac{1}{2}\right)^2}+\frac{30\cdot\sqrt{3}}{729}\cdot\arctan\left(\sqrt{\frac{4}{27}}\cdot\left(x+\frac{1}{2}\right)\right)+C$
c1fc8501-1c68-469f-a8b9-22b27702d1c8
algebra
false
null
Use Descartes’ Rule of Signs to determine the possible number of positive and negative real zeros of the following polynomial: $p(x) = 2 \cdot x^3 - x^2 + 7 \cdot x - 1$
The number of positive zeros: $1$, $3$ The number of negative zeros: $0$
c221a7ed-a23f-41f3-89c0-2b6faf6228de
precalculus_review
false
null
Solve the trigonometric equation $\sec(x)^2 - 2 \cdot \sec(x) + 1 = 0$ on the interval $[-2 \cdot \pi, 2 \cdot \pi]$.
$x$ = $-2\cdot\pi$, $2\cdot\pi$, $0$
c251e922-18a0-40d3-a506-3a4d6f32a485
algebra
false
null
Write an expression for a rational function with the given characteristics: 1. vertical asymptotes $x=-5$ and $x=5$, 2. x-intercepts at $P(2,0)$ and $P(-1,0)$, 3. y-intercept at $P(0,4)$.
The rational function satisfying the given conditions is $f(x)=\frac{50\cdot(x-2)\cdot(x+1)}{(x+5)\cdot(x-5)}$
c2a16bfe-a68f-49e2-a46b-b76210e6995a
differential_calc
false
null
Make full curve sketching of $y = \arcsin\left(\frac{ 2-5 \cdot x^2 }{ 2+5 \cdot x^2 }\right)$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes None 3. Horizontal asymptotes $y=-\frac{\pi}{2}$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(-\infty,0)$, $(0,\infty)$ 6. Intervals where the function is decreasing $(-\infty,0)$, $(0,\infty)$ 7. Intervals where the function is concave up $(-\infty,0)$ 8. Intervals where the function is concave down None 9. Points of inflection None
c2c64c79-64e8-4c01-8d35-17ac590004cd
differential_calc
false
null
For the function $y = x \cdot \sqrt[3]{2 \cdot x - \frac{ 4 }{ 3 }}$ determine the intervals, where the function is concave up and concave down and points of inflection. Submit as your final answer: 1. Interval(s) where the function is concave up 2. Interval(s) where the function is concave down 3. Point(s) of inflection
1. Interval(s) where the function is concave up: $\left(-\infty,\frac{2}{3}\right)$, $(1,\infty)$ 2. Interval(s) where the function is concave down: $\left(\frac{2}{3},1\right)$ 3. Point(s) of inflection: $P\left(\frac{2}{3},0\right)$, $P\left(1,\sqrt[3]{\frac{2}{3}}\right)$
c2d80e7a-26ff-46c4-a9ac-1d3f772e77ab
precalculus_review
false
null
Solve $\left(\sin(x)\right)^{10} + \left(\cos(x)\right)^{10} = \frac{ 29 }{ 16 } \cdot \left(\cos(2 \cdot x)\right)^4$.
The final answer: $x=\frac{\pi}{8}+\frac{\pi\cdot k}{4}$
c3062353-e56a-4397-bc22-1ea7e9e7fc72
differential_calc
false
null
Where is the parabola $y = x^2$ closest to the point $(2,0)$?
The final answer: $P(0.8351,0.6974)$
c37c3f43-24ad-4906-a400-c14ace455f14
multivariable_calculus
false
null
Use Lagrange multipliers to find the maximum volume of a rectangular box that can be inscribed in the ellipsoid $\frac{ x^2 }{ 9 } + \frac{ y^2 }{ 25 } + \frac{ z^2 }{ 4 } = 1$.
The final answer: $\frac{80}{\sqrt{3}}$
c38d8b60-f7e8-433d-ac1c-3d3adc457a9b
sequences_series
false
null
Give the first six terms of the sequence and then give the $n$th term. 1. $a_{1} = 1$ 2. $a_{2} = 3$ $a_{n+1} = 3 \cdot a_{n} - 2 \cdot n - 1$ for $n \ge 2$
$a_{1}$ = $1$ , $a_{2}$ = $3$ , $a_{3}$ = $4$ , $a_{4}$ = $5$ , $a_{5}$ = $6$ , $a_{6}$ = $7$ $a_{n}$ = $n+1$ for $n \ge 2$
c3b0d303-3a1c-431d-9b8e-84e4d9d8a53e
differential_calc
false
null
Given $g(x) = \frac{ 1 }{ 3 } \cdot (a+b) \cdot x^3 + \frac{ 1 }{ 2 } \cdot (a+b+c) \cdot x^2 - (a+b+c+d) \cdot x + a \cdot b \cdot c \cdot d$, simplify the derivative of $g(x)$ if $x^2 + x = a + b$.
The final answer: $g'(x)=(a+b)^2+c\cdot x-(a+b+c+d)$
c47c3a9b-3f0f-4752-b421-b9a8a197b1e9
multivariable_calculus
true

A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60$ deg with the horizontal. At what time is the maximum range of the projectile attained? The graph is shown here:
$t$ = $88.37$
c487e6c3-04f0-44a1-9e8f-4512dccbeacf
differential_calc
true

The graph below is the derivative of a function, $f$, whose domain is the set of all real numbers and is continuous everywhere. Determine the x values for the relative extrema for $f$.
There is a local maximum at x-value(s): $x=-3$, $x=4$ There is a local minimum at x-value(s): $x=-1$
c57070ee-de68-4104-beda-984585448856
differential_calc
false
null
For the function $y = (3 - x)^3 \cdot (x + 2)^2$ specify the points where local maxima and minima of $y$ occur. 1. The point(s) where local maxima occur 2. The point(s) where local minima occur
1. The point(s) where local maxima occur: $P(0,108)$ 2. The point(s) where local minima occur: $P(-2,0)$
c57bcca2-8fe0-433f-98b9-bd31a9a66e49
integral_calc
false
null
Solve the integral: $$ \int \frac{ 4 }{ \cos(-3 \cdot x)^3 \cdot \sin(-3 \cdot x)^2 } \, dx $$
$\int \frac{ 4 }{ \cos(-3 \cdot x)^3 \cdot \sin(-3 \cdot x)^2 } \, dx$ = $C+\frac{4}{3}\cdot\left(\frac{3}{4}\cdot\ln\left(\left|1+\sin(3\cdot x)\right|\right)-\frac{1}{2\cdot\left(\left(\sin(3\cdot x)\right)^2-1\right)}\cdot\sin(3\cdot x)-\frac{3}{4}\cdot\ln\left(\left|\sin(3\cdot x)-1\right|\right)-\frac{1}{\sin(3\cdot x)}\right)$
c600dd96-8ec6-4564-8cfc-0dcecb9d1084
integral_calc
false
null
Solve the integral: $$ 2 \cdot \int \sin(-2 \cdot x)^5 \cdot \cos(2 \cdot x)^2 \, dx $$
$2 \cdot \int \sin(-2 \cdot x)^5 \cdot \cos(2 \cdot x)^2 \, dx$ = $C+\frac{1}{3}\cdot\left(\cos(2\cdot x)\right)^3+\frac{1}{7}\cdot\left(\cos(2\cdot x)\right)^7-\frac{2}{5}\cdot\left(\cos(2\cdot x)\right)^5$
c6544023-d8e0-45df-9798-832448bac8aa
sequences_series
false
null
Find the Fourier expansion of this function: $$ f(x) = \begin{cases} -\frac{ \pi }{ 4 }, & -\pi \le x < 0 \\ \frac{ \pi }{ 4 }, & 0 \le x \le \pi \end{cases} $$ at $(-\pi, \pi)$.
The Fourier series is: $\sum_{n=1}^\infty\left(\frac{\sin\left((2\cdot n-1)\cdot x\right)}{2\cdot n-1}\right)$
c65eeba7-8616-499c-97b1-31abc7253b2d
sequences_series
false
null
Find the Taylor series of $f'(x)$ about $a=0$ if $f(x) = \frac{ \sin(x) - x }{ x^2 }$. Use sigma notation in the final answer.
The final answer: $\sum_{k=1}^\infty\left((-1)^k\cdot\frac{(2\cdot k-1)\cdot x^{2\cdot k-2}}{(2\cdot k+1)!}\right)$
c6e74489-488e-4d9a-8ad5-45abc3c647e9
sequences_series
false
null
Given that $\frac{ 1 }{ 1-x } = \sum_{n=0}^\infty \left(x^n\right)$ with convergence in $(-1,1)$, find the power series for the function with the given center $a$, and identify its interval of convergence: 1. $f(x) = \frac{ x^2 }{ 5-4 \cdot x+x^2 }$; $a=2$.
1. $f(x)$ = $\sum_{n=0}^\infty\left(x^2\cdot\left(-(x-2)^2\right)^n\right)$ 2. $I$ = $(1,3)$
c724aa02-d543-4850-97d9-517c1f1eeb74
differential_calc
false
null
A rocket shot into the air that then returns to Earth. The height of the rocket in meters is given by $h(t) = 600 + 78.4 \cdot t - 4.9 \cdot t^2$, where $t$ is measured in seconds. Compute the average velocity of the rocket over the given time intervals. Round your answer to eight significant digits. 1. $[9,9.01]$ 2. $[8.99,9]$ 3. $[9,9.001]$ 4. $[8.999,9]$
1. $-9.8490000$ m/sec. 2. $-9.7510000$ m/sec. 3. $-9.8049000$ m/sec. 4. $-9.7951000$ m/sec.
c7fcefca-8951-42f5-99b4-83026cbb571f
algebra
false
null
Perform the indicated operation and express the result as a simplified complex number: $i^{15}$
The final answer: $-i$
c80d8185-edc4-4a44-9e58-dcab9d666178
differential_calc
false
null
Find any local extrema for $s = \left| \arctan\left(4 \cdot x^2 - 12 \cdot x + 8\right) \right|$. Submit as your final answer: 1. The point(s), where the function has local maximum(s); 2. The point(s), where the function has local minimum(s).
1. Local Maximum(s) $P\left(\frac{3}{2},\frac{\pi}{4}\right)$; 2. Local Minimum(s) $P(1,0)$, $P(2,0)$.
c890e92c-0ebd-42a5-a3d3-fce40464ed16
precalculus_review
false
null
Calculate the derivative $\frac{ d }{d x}\left(\log_{x}(a)\right)$ for $x > 0$, $a > 0$, $x \ne 1$, $a \ne 1$.
$\frac{ d }{d x}\left(\log_{x}(a)\right)$ = $\frac{-\ln(a)}{x\cdot\left(\ln(x)\right)^2}$
c89d463c-5220-451b-80db-0200a72cbdcb
sequences_series
false
null
Consider the power series $\sum_{k=0}^\infty \frac{ (1-3 \cdot x)^k }{ 4^k \cdot \sqrt{k+1} }$. 1. Find the center of convergence of the series. 2. Find the radius of convergence of the series.
1. The center of convergence is $\frac{1}{3}$. 2. The radius of convergence is $\frac{4}{3}$.
c89f34ab-0533-4173-aba0-76f2b2800224
algebra
false
null
Solve the following inequality: $-5 x^2 + 10 x + 15 \le 0$. Express your answer in the interval form.
Solution in the interval form: $\left(-\infty,\ -1\right] \cup \left[3,\ \infty\right)$ *Note: enter an interval or union of intervals. If there is no solution, leave empty or enter "none".*
c8c08145-397a-4331-8934-956d0e39af2d
sequences_series
false
null
Determine the Taylor series for $f(x) = \frac{ 2 \cdot x - 1 }{ x^2 - 3 \cdot x + 2 }$, centered at $x_{0} = 0$. Write out the sum of the first four non-zero terms, followed by dots.
The final answer: $\left(1-\frac{3}{2}\right)+\left(1-\frac{3}{2}\cdot\frac{1}{2}\right)\cdot x+\left(1-\frac{3}{2}\cdot\frac{1}{2^2}\right)\cdot x^2+\left(1-\frac{3}{2}\cdot\frac{1}{2^3}\right)\cdot x^3+\cdots$
c8dc16e5-519c-4ebe-9432-d1f13b782008
algebra
false
null
To convert from $x$ degrees Fahrenheit to $y$ degrees Celsius, we use the formula $f(x) = \frac{ 5 }{ 9 } \cdot (x-32)$. Find the inverse function, if it exists. If it doesn't exist, write $\text{None}$.
Inverse function: $g(x)=\frac{9}{5}\cdot y+32$
c9256ca7-b498-433f-975c-11aa311ca307
precalculus_review
false
null
Use the Rational Zero Theorem to find all real zeros of the following polynomial: $p(x) = 9 \cdot x^3 + 6 \cdot x^2 - 29 \cdot x - 10$
The real zeros are $-2$, $-\frac{1}{3}$, $\frac{5}{3}$
c92615c8-ce81-46c3-8693-7b13461c9371
multivariable_calculus
true

Find the surface area bounded by the curves $q = a \cdot \cos(\varphi)$, $p = b \cdot \cos(\varphi)$, $b > a > 0$.
$S$ = $\frac{\pi}{4}\cdot\left(b^2-a^2\right)$
c9286655-d7f7-45da-a36c-6736332eca0d
integral_calc
false
null
Compute the integral: $$ 3 \cdot \int \frac{ \cos(3 \cdot x)^4 }{ \sin(3 \cdot x)^3 } \, dx $$
$3 \cdot \int \frac{ \cos(3 \cdot x)^4 }{ \sin(3 \cdot x)^3 } \, dx$ = $C+\frac{3}{4}\cdot\ln\left(\frac{1+\cos(3\cdot x)}{1-\cos(3\cdot x)}\right)-\frac{\left(\cos(3\cdot x)\right)^3}{2-2\cdot\left(\cos(3\cdot x)\right)^2}-\frac{3}{2}\cdot\cos(3\cdot x)$
c93e2665-a4ed-40fb-85e2-4c28ad0dced4
sequences_series
false
null
Evaluate $\sum_{n=2}^\infty\frac{ n \cdot (n-1) }{ 2^n }$ as $f''\left(\frac{ 1 }{ 2 }\right)$ where $f(x) = \sum_{n=0}^\infty x^n$.
$\sum_{n=2}^\infty\frac{ n \cdot (n-1) }{ 2^n }$ = $4$
c9dd4213-29b4-46b3-86dd-b34b06ed004a
precalculus_review
false
null
Find the zeros of $f(x) = (2 - x)^4 + (2 \cdot x - 1)^4 - (x + 1)^4$.
The final answer: $x_1=2 \land x_2=\frac{1}{2}$
c9e88bba-f8b2-49e6-8c20-2bb176663e89
sequences_series
false
null
Using the Taylor formula, decompose the function $f(x) = \ln\left(1+\frac{ x }{ 5 }\right)$ in powers of the variable $x$ on the segment $[0,1]$. Use the first nine terms. Then estimate the accuracy obtained by dropping an additional term after the first nine terms.
1. $\ln\left(1+\frac{ x }{ 5 }\right)$ = $\frac{x}{5}-\frac{x^2}{5^2\cdot2}+\frac{x^3}{5^3\cdot3}-\frac{x^4}{5^4\cdot4}+\frac{x^5}{5^5\cdot5}-\frac{x^6}{5^6\cdot6}+\frac{x^7}{5^7\cdot7}-\frac{x^8}{5^8\cdot8}+\frac{x^9}{5^9\cdot9}$ 2. Accuracy is not more than $\frac{1}{10\cdot5^{10}}$
c9fab8b1-59aa-4e6f-9428-ef2aa6679b28
algebra
false
null
A local band sells out for their concert. They sell all 1175 tickets for a total purse of $28,112.5. The tickets were priced at $20 for student tickets, $22.5 for children, and $29 for adult tickets. If the band sold twice as many adult as children tickets, how many of each type was sold?
Student tickets: $500$ Children tickets: $225$ Adult tickets: $450$
ca5a60b8-627d-46bb-af40-542e361e629d
differential_calc
true

Use the following figure to find the indicated derivatives, if they exist (enter 'undefined' if the derivative doesn't exist): Let $h(x) = f(x) + g(x)$. Find: 1. $h'(1)$ 2. $h'(3)$ 3. $h'(4)$
1. $h'(1)$ = $0$ 2. $h'(3)$ = None 3. $h'(4)$ = $1$
ca5b0525-4e4c-4698-8367-146ba9ca18e3
algebra
false
null
Luna is going bowling. Shoe rental costs $3 and the lane costs $2 per game. If Luna paid a total of $17, how many games did she bowl?
Luna bowled $7$ games.
ca5ffe7c-f495-43dc-a653-de477cabc185
sequences_series
false
null
Find the radius of convergence of the series: $$ \sum_{n=1}^\infty \left(\frac{ \left((2 \cdot n)!\right) \cdot x^n }{ n^{2 \cdot n} }\right) $$
$R$ = $\frac{e^2}{4}$
ca6b1413-d76d-4992-89ed-aaad88dc94ef
multivariable_calculus
false
null
Evaluate $L=\lim_{P(x,y) \to P(m+n,m-n)}\left(\frac{ x^2-m \cdot x-x \cdot y+m \cdot y-2 \cdot n \cdot x+2 \cdot m \cdot n }{ x \cdot y-n \cdot x-y^2-n \cdot y+2 \cdot n^2 }\right)$, given $m-2 \cdot n=7 \cdot n$
The final answer: $L=\frac{1}{7}$
cac53af9-3149-4ea9-b0c9-13b6a9d9a18f
algebra
false
null
Use the Rational Zero Theorem to find the real solution(s) for the equation: $8 \cdot x^4 + 26 \cdot x^3 + 39 \cdot x^2 + 26 \cdot x + 6 = 0$
By the Rational Zero Theorem, possible solutions occur at values $-\frac{1}{2}$, $-\frac{3}{4}$, $1$, $-1$, $2$, $-2$, $3$, $-3$, $\frac{ 1 }{ 2 }$, $\frac{ 3 }{ 2 }$, $-\frac{ 3 }{ 2 }$, $\frac{ 1 }{ 4 }$, $-\frac{ 1 }{ 4 }$, $\frac{ 3 }{ 4 }$, $\frac{ 1 }{ 8 }$, $-\frac{ 1 }{ 8 }$, $\frac{ 3 }{ 8 }$, $-\frac{ 3 }{ 8 }$, $6$, $-6$. (Be sure to submit each possibility only once; hint: there are 20 unique possibilities by RZT). $x$ = $-\frac{1}{2}$, $-\frac{3}{4}$, $1$, $-1$, $2$, $-2$, $3$, $-3$, $\frac{ 1 }{ 2 }$, $\frac{ 3 }{ 2 }$, $-\frac{ 3 }{ 2 }$, $\frac{ 1 }{ 4 }$, $-\frac{ 1 }{ 4 }$, $\frac{ 3 }{ 4 }$, $\frac{ 1 }{ 8 }$, $-\frac{ 1 }{ 8 }$, $\frac{ 3 }{ 8 }$, $-\frac{ 3 }{ 8 }$, $6$, $-6$
cb4f082e-28c9-4e3d-bc92-12d111f5c953
sequences_series
false
null
Compute $\int_{0}^{\frac{ 1 }{ 5 }} e^{-2 \cdot x^2} \, dx$ with accuracy $0.00001$.
The final answer: $0.1948$
cb72c058-1dd3-47a6-bf34-25ab75f7a436
integral_calc
false
null
Find the integral: $$ \int \frac{ 4 \cdot x^2+25 \cdot x+7 }{ \sqrt{x^2+8 \cdot x} } \, dx $$
$\int \frac{ 4 \cdot x^2+25 \cdot x+7 }{ \sqrt{x^2+8 \cdot x} } \, dx$ = $(2\cdot x+1)\cdot\sqrt{x^2+8\cdot x}+3\cdot\ln\left(\left|x+4+\sqrt{x^2+8\cdot x}\right|\right)+C$
cbb4b10b-ecb3-497b-8a66-81c54a1d265a
precalculus_review
false
null
Evaluate the definite integral. Express answer in exact form whenever possible: $$ \int_{\frac{ -\pi }{ 3 }}^{\frac{ \pi }{ 3 }} \sqrt{\left(\sec(x)\right)^2-1} \, dx $$
$\int_{\frac{ -\pi }{ 3 }}^{\frac{ \pi }{ 3 }} \sqrt{\left(\sec(x)\right)^2-1} \, dx$ = $0$
cc16099c-195d-4735-9d83-0b18f8f27a27
sequences_series
false
null
Find a “reasonable” upper-bound on the error in approximating $f(x) = x^7$ by its 3rd order Taylor polynomial $P_{3}(x)$ about $a = -1$ valid for all values of $x$ such that $|x + 1| \leq 0.1$.
The final answer: $840\cdot(1.1)^3\cdot\frac{(0.1)^4}{4!}$
cc733108-05a4-4478-9f32-0eea85157535
integral_calc
false
null
Compute the volume of the solid formed by rotating about the x-axis the area bounded by the axes and the parabola $x^{\frac{ 1 }{ 2 }}+y^{\frac{ 1 }{ 2 }}=5^{\frac{ 1 }{ 2 }}$.
Volume = $\pi\cdot\frac{25}{3}$
cc73f597-71ca-49bd-8bc4-62c5b0c48753
differential_calc
false
null
Make full curve sketching of $y = \arcsin\left(\frac{ 1-3 \cdot x^2 }{ 1+3 \cdot x^2 }\right)$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes None 3. Horizontal asymptotes $y=-\frac{\pi}{2}$ 4. Slant asymptotes None 5. Intervals where the function is increasing $(-\infty,0)$, $(0,\infty)$ 6. Intervals where the function is decreasing $(-\infty,0)$, $(0,\infty)$ 7. Intervals where the function is concave up $(-\infty,0)$ 8. Intervals where the function is concave down None 9. Points of inflection None
cc752972-ff6b-4b03-8a40-722afdd8bb50
multivariable_calculus
false
null
Determine the coordinates, if any, for which $f(x,y) = x^3 - 3 \cdot x \cdot y^2 + 6 \cdot y^2 - 8$ has 1. a Relative Minimum(s) 2. a Relative Maximum(s) 3. a Saddle Point(s) If a Relative Minimum or Maximum, find the Minimum or Maximum value. If none, enter None.
1. The function $f(x,y)$ has Relative Minimum(s) at None with the value(s) None 2. The function $f(x,y)$ has Relative Maximum(s) at None with the value(s) None 3. The function $f(x,y)$ has a Saddle Point(s) at $P(2,-2)$, $P(2,2)$
ccfa5962-71e5-4955-bc2d-c91098f2cd13
integral_calc
false
null
Solve the integral: $$ \int \frac{ 20 \cdot \cos(-10 \cdot x)^3 }{ 21 \cdot \sin(-10 \cdot x)^7 } \, dx $$
$\int \frac{ 20 \cdot \cos(-10 \cdot x)^3 }{ 21 \cdot \sin(-10 \cdot x)^7 } \, dx$ = $C+\frac{1}{21}\cdot\left(\frac{1}{2}\cdot\left(\cot(10\cdot x)\right)^4+\frac{1}{3}\cdot\left(\cot(10\cdot x)\right)^6\right)$
cd1538cc-ca04-4235-819e-b0d2b3542eb2
algebra
false
null
The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $84\ 000$ subscribers at a quarterly charge of $\$30$. Market research has suggested that if the owners raise the price to $\$32$, they would lose $5000$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?
The final answer: $31.8$
cdfb4e3a-81b3-4b5e-84f0-0e48d5898fe4
sequences_series
false
null
Find the Taylor polynomial $P_{5}$ for the function $f(x) = x \cdot \cos\left(x^2\right)$.
$P_{5}$ = $x-\frac{1}{2}\cdot x^5$
ce47631d-a24b-4d1b-8f75-aeaf64f9da34
integral_calc
false
null
Solve the integral: $$ -\int \frac{ 1 }{ \cos(x)^3 \cdot \sin(x)^2 } \, dx $$
$-\int \frac{ 1 }{ \cos(x)^3 \cdot \sin(x)^2 } \, dx$ = $C+\frac{\sin(x)}{2\cdot\left(\left(\sin(x)\right)^2-1\right)}+\frac{3}{4}\cdot\ln\left(\left|\sin(x)-1\right|\right)+\frac{1}{\sin(x)}-\frac{3}{4}\cdot\ln\left(\left|1+\sin(x)\right|\right)$
ce5fb045-4688-4338-8225-f0a5c9b38ee2
sequences_series
false
null
Find the Fourier series of the function $\psi(x) = e^{-2 \cdot x}$ in the interval $(-2 \cdot \pi, 2 \cdot \pi)$.
The Fourier series is: $e^{-2\cdot x}=\frac{\left(e^{4\cdot\pi}-e^{-4\cdot\pi}\right)}{\pi}\cdot\left(\frac{1}{8}+\sum_{n=1}^\infty\frac{(-1)^n\cdot\left(4\cdot\cos(n\cdot x)+n\cdot\sin(n\cdot x)\right)}{16+n^2}\right)$
ce91d092-7d61-4244-85a6-f8d040bb6264
precalculus_review
false
null
Find zeros of $f(x) = \sqrt{2 \cdot x - 1} - \sqrt{x - 1} - 5$
The final answer: $x=145$
ce97eb96-8d97-4889-97b8-deb2bb3023a4
algebra
false
null
Write an expression for a rational function with the given characteristics: 1. vertical asymptotes $x=-6$ and $x=6$, 2. x-intercepts at $P(1,0)$ and $P(-1,0)$, 3. y-intercept at $P(0,2)$.
The rational function satisfying the given conditions is $f(x)=\frac{72\cdot(x-1)\cdot(x+1)}{(x+6)\cdot(x-6)}$
ceae34e5-3a64-44a0-95c9-a2e5f16fe8ae
integral_calc
false
null
Find the area of the figure enclosed between the curves $y = 4 \cdot x^2$, $y = \frac{ x^2 }{ 3 }$, and $y = 2$.
Area: $\frac{\left(8\cdot\sqrt{3}-4\right)\cdot\sqrt{2}}{3}$
cf789d84-24bd-45fa-89da-772ce496d1d0
multivariable_calculus
false
null
Find the measure of the angle $\theta$ between the three-dimensional vectors $\vec{a}$ and $\vec{b}$, expressed in radians rounded to two decimal places, if it is not possible to express it exactly. Given: $\vec{a} = 3 \cdot \vec{i} - \vec{j} - 2 \cdot \vec{k}$ $\vec{b} = \vec{v} - \vec{w}$, where $\vec{v} = 2 \cdot \vec{i} + \vec{j} + 4 \cdot \vec{k}$ and $\vec{w} = 6 \cdot \vec{i} + \vec{j} + 2 \cdot \vec{k}$
$\theta$ = $2.84$
cfeeda2e-b0df-47fc-89b0-3f8cb8938309
integral_calc
false
null
Evaluate the integral: $$ I = \int 3 \cdot x \cdot \ln\left(4 + \frac{ 1 }{ x } \right) \, dx $$
The final answer: $\left(\frac{3}{2}\cdot x^2\cdot\ln(4\cdot x+1)-\frac{3\cdot x^2}{4}+\frac{3\cdot x}{8}-\frac{3}{32}\cdot\ln\left(x+\frac{1}{4}\right)\right)-\left(\frac{3}{2}\cdot x^2\cdot\ln(x)-\left(C+\frac{3}{4}\cdot x^2\right)\right)$
cfef8ba8-ebc2-4ce0-a35f-c900e2bf8c99
sequences_series
false
null
A general telescoping series is one in which all but the first few terms cancel out after summing a given number of successive terms. Let $a_{n} = f(n) - 2 \cdot f(n+1) + f(n+2)$, in which $f(n)$ -> 0 as $n$ -> $\infty$. Find $\sum_{n=1}^\infty\left(a_{n}\right)$.
$\sum_{n=1}^\infty\left(a_{n}\right)$ = $f(1)-f(2)$
d0331d53-4efd-46ce-a9d3-d10570408bd7
precalculus_review
false
null
Solve $z^2 - (2 \cdot i + 1) \cdot z - (3 - i) = 0$.
The final answer: $z_1=2+i \lor z_1=-1+i$
d0e2146e-63e1-4b1d-8f2c-6c0c62ab256f
multivariable_calculus
false
null
Calculate the double integral: $$ \int\int_{R}{\left(x \cdot y \cdot \sqrt{x^2+y^2}\right) d A} $$ where $R=\left\{(x,y)|0 \le x \le 1,0 \le y \le 2\right\}$.
The final answer: $\frac{25\cdot\sqrt{5}-33}{15}$
d1263456-584b-4e04-be1c-20da3101099e
sequences_series
false
null
Find the Fourier series of the function $\psi(x) = e^{-x}$ in the interval $(-\pi,\pi)$.
The Fourier series is: $e^{-x}=\frac{e^\pi-e^{-\pi}}{2\cdot\pi}\cdot\left(\frac{1}{2}+\sum_{n=1}^\infty\left(\frac{(-1)^n}{1+n^2}\cdot\left(\cos(n\cdot x)+n\cdot\sin(n\cdot x)\right)\right)\right)$