uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
eb55c837-bb39-44bd-9cc9-e835a6446582
multivariable_calculus
false
null
Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z) = y \cdot z + x \cdot y$ subject to the constraints $x \cdot y = 1$ and $y^2 + z^2 = 1$.
A minimum of $f(x,y,z)$ is $\frac{1}{2}$ A maximum of $f(x,y,z)$ is $\frac{3}{2}$
eb966639-1939-4210-945f-05a52370964f
algebra
true

Estimate the intervals where the function is increasing or decreasing:
The final answer: 1. Interval(s) of increase: $(-\infty,-3)\cup(3,\infty)$ 2. Interval(s) of decrease: $(-3,3)$
ebce3086-94ba-4f5d-a9eb-d41c4104e62a
differential_calc
false
null
Sketch the curve: $$ y = 25 \cdot x^2 \cdot e^{\frac{ 1 }{ 5 \cdot x }} $$ Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-\infty,0)\cup(0,\infty)$ 2. Vertical asymptotes: $x=0$ 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(\frac{1}{10},\infty\right)$ 6. Intervals where the function is decreasing: $(-\infty,0)$, $\left(0,\frac{1}{10}\right)$ 7. Intervals where the function is concave up: $(0,\infty)$, $(-\infty,0)$ 8. Intervals where the function is concave down: None 9. Points of inflection: None
ebd03078-271e-4a68-af4e-459266d93331
integral_calc
true

Find the areas enclosed by the curves $y^2 = 4 \cdot x$ and $y^2 = 8 \cdot x - x^2$ using integration with respect to $x$: 1. The area of the smaller, shaded region. 2. The area of the larger, yellow region.
1. The area of the smaller, shaded region is $8\cdot\left(\pi-\frac{8}{3}\right)$ 2. The area of the larger, yellow region is $8\cdot\left(\pi+\frac{8}{3}\right)$
ecc3ece9-4782-446c-a583-bf68cbb20da0
algebra
false
null
1 cup = 8 fluid oz 1 pint = 2 cups = 16 fl oz 1 quart = 2 pints = 4 cups = 32 fluid oz 1 gal = 4 quarts = 8 pints = 16 cups = 128 fl oz 1 lb = 16 oz 1 ton = 2,000 lbs 1 kg = 1,000 g 1 metric ton = 1,000 kg 1 m = 100 cm 1 km = 1,000 m 1. Miles has a bag of peanuts that weighs 64 oz. How many lbs of peanuts does he have? 2. Michelle has 8 pints of milk. How many quarts of milk does she have? 3. Peter needs 8 cups of water for his drink mix. How many pints is this? 4. What is 1 metric ton and 500 kg multiplied by 4? 5. What is 50 lb and 20 oz divided by 5?
1. $4$ 2. $4$ 3. $4$ 4. $6,000$ 5. $10.25$
ed054e0e-5292-4e76-a784-4603be66e688
multivariable_calculus
false
null
Evaluate the integral by interchanging the order of integration: $$ \int_{1}^{27} \int_{1}^2 \left(\sqrt[3]{x} + \sqrt[3]{y}\right) \, dy \, dx $$
$\int_{1}^{27} \int_{1}^2 \left(\sqrt[3]{x} + \sqrt[3]{y}\right) \, dy \, dx$ = $39\cdot\sqrt[3]{2}+\frac{81}{2}$
ed1c56f4-e389-41c3-a2dd-34b41b6cfc41
differential_calc
false
null
For the function $y = \ln\left(x^2 - \frac{ 3 }{ 2 }\right) - 4 \cdot x$ determine the intervals, where the function is increasing and decreasing. Submit as your final answer: 1. Interval(s) where the function is increasing 2. Interval(s) where the function is decreasing
1. Interval(s) where the function is increasing: $\left(\sqrt{\frac{3}{2}},\frac{3}{2}\right)$ 2. Interval(s) where the function is decreasing: $\left(-\infty,-\sqrt{\frac{3}{2}}\right)$, $\left(\frac{3}{2},\infty\right)$
ed2645bb-1dfa-4a91-ae3e-019819072602
differential_calc
true

Given $f(t) = 2 \cdot t^3 \cdot h(t)$, find $f'(2)$ using the table below:
$f'(2)$ = $-28$
ed6590ad-a3e5-4993-8bb9-046bd2baed10
precalculus_review
false
null
Evaluate the definite integral. Express answer in exact form whenever possible: $$ \int_{0}^\pi \sin\left(\frac{ 1 }{ 2 } \cdot x\right) \cdot \cos\left(\frac{ 1 }{ 4 } \cdot x\right) \, dx $$
$\int_{0}^\pi \sin\left(\frac{ 1 }{ 2 } \cdot x\right) \cdot \cos\left(\frac{ 1 }{ 4 } \cdot x\right) \, dx$ = $\frac{8-2\cdot\sqrt{2}}{3}$
edd9644b-fd02-4a1a-a1f2-e7bca71a8d16
multivariable_calculus
false
null
Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.) $f(x,y,z) = \arctan(x \cdot y \cdot z)$.
$f_{xx}(x,y,z)$ = $\frac{-2\cdot x\cdot y^3\cdot z^3}{\left(1+x^2\cdot y^2\cdot z^2\right)^2}$ $f_{xy}(x,y,z)$ = $f_{yx}(x,y,z)$ = $\frac{z-x^2\cdot y^2\cdot z^3}{\left(1+x^2\cdot y^2\cdot z^2\right)^2}$ $f_{yy}(x,y,z)$ = $\frac{-2\cdot x^3\cdot y\cdot z^3}{\left(1+x^2\cdot y^2\cdot z^2\right)^2}$ $f_{yz}(x,y,z)$ = $f_{zy}(x,y,z)$ = $\frac{x-x^3\cdot y^2\cdot z^2}{\left(1+x^2\cdot y^2\cdot z^2\right)^2}$ $f_{zz}(x,y,z)$ = $\frac{-2\cdot x^3\cdot y^3\cdot z}{\left(1+x^2\cdot y^2\cdot z^2\right)^2}$ $f_{xz}(x,y,z)$ = $f_{zx}(x,y,z)$ = $\frac{y-x^2\cdot y^3\cdot z^2}{\left(1+x^2\cdot y^2\cdot z^2\right)^2}$
ede288d5-dc9e-40cc-8a71-19739dead514
differential_calc
false
null
For the function $f(x) = x^3 + x^4$, determine: 1. Intervals where $f$ is increasing or decreasing, 2. Local minima and maxima of $f$, 3. Intervals where $f$ is concave up and concave down, and 4. The inflection points of $f$.
1. Increasing over $\left(-\frac{3}{4},0\right)\cup(0,\infty)$; decreasing over $\left(-\infty,-\frac{3}{4}\right)$ 2. Local maxima at None; local minima at $x=-\frac{3}{4}$ 3. Concave up for $x<-\frac{1}{2}$, $x>0$; concave down for $-\frac{1}{2}<x<0$ 4. Inflection points at $P\left(-\frac{1}{2},-\frac{1}{16}\right)$
ee44cdc7-c5a2-4805-89a4-1ab2303c9f5f
integral_calc
false
null
Find the area of the figure enclosed between the curves $y = 3 \cdot x^2$, $y = \frac{ x^2 }{ 6 }$, and $y = 2$.
Area: $\frac{48-8\cdot\sqrt{2}}{3\cdot\sqrt{3}}$
ee5612f3-dfe9-48e0-923c-6283b47e7047
sequences_series
false
null
Compute $\sqrt[5]{1000}$ with accuracy $10^{-5}$.
The final answer: $3.981072$
ee885838-2669-4456-821d-5bf3b8ec639c
differential_calc
false
null
Given the curve $y = 2 \cdot x - \arccos\left(\frac{ 1 }{ x }\right)$, find all 1. horizontal asymptotes, 2. vertical asymptotes, 3. slant asymptotes.
1. horizontal asymptotes: None 2. vertical asymptotes: None 3. slant asymptotes: $y=2\cdot x-\frac{\pi}{2}$
ef10d9c3-512a-450c-af52-3c11bd8c7b53
algebra
false
null
Find the area of a triangle bounded by the x-axis, the line $f(x) = 12 - \frac{ 1 }{ 3 } \cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.
The area of the triangle is $\frac{972}{5}$
ef27aab9-82a3-4029-ad59-88207a0aa73d
precalculus_review
false
null
Use properties of the natural logarithm to write the expression $\ln\left(\frac{ 6 }{ \sqrt{e^3} }\right)$ as an expression of $\ln(6)$.
$\ln\left(\frac{ 6 }{ \sqrt{e^3} }\right)$ = $\ln(6)-\frac{3}{2}$
ef4c1961-77eb-4ec9-9674-8d37ac5fb76d
sequences_series
false
null
Find the Fourier integral of the function $q(x) = \begin{cases} 0, & x < 0 \\ \pi \cdot x, & 0 \le x \le 2 \\ 0, & x > 2 \end{cases}$
$q(x) = $\int_0^\infty\left(\frac{\left(2\cdot\alpha\cdot\sin\left(2\cdot\alpha\right)+\cos\left(2\cdot\alpha\right)-1\right)\cdot\cos\left(\alpha\cdot x\right)+\left(\sin\left(2\cdot\alpha\right)-2\cdot\alpha\cdot\cos\left(2\cdot\alpha\right)\right)\cdot\sin\left(\alpha\cdot x\right)}{\alpha^2}\right)d\alpha$
ef891729-6f14-49d4-9e8b-5359940d9704
algebra
false
null
The population $P$ of a koi pond over $x$ months is modeled by the function $P(x) = \frac{ 68 }{ 1 + 16 \cdot e^{-0.28 \cdot x} }$. How many months will it take before there are $20$ koi in the pond?
$x$: $\frac{\ln(0.15)}{-0.28}$
ef9db5b2-252c-4e24-b0bc-60680edcc39f
sequences_series
false
null
Find the Fourier series of the function $\varphi(x) = \frac{ x }{ 2 }$ in the interval $(0, 2 \cdot \pi)$.
The Fourier series is: $\frac{\pi}{2}-\frac{\sin(x)}{1}-\frac{\sin(2\cdot x)}{2}-\frac{\sin(3\cdot x)}{3}-\cdots$
efa9f4b4-8a9e-4f58-9671-8a0e93572e95
algebra
false
null
Find the area of a triangle bounded by the x-axis, the line $f(x) = 12 - \frac{ 1 }{ 5 } \cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.
The area of the triangle is $\frac{4500}{13}$
efadedf0-ebaf-4ce0-b95e-58234f0c05d5
differential_calc
false
null
Find the derivative of $y = \sin(2 \cdot x) \cdot \cos(3 \cdot x) - \frac{ \ln(x-1) }{ \ln(x+1) } + c$
The final answer: $y'=2\cdot\cos(5\cdot x)-\sin(3\cdot x)\cdot\sin(2\cdot x)-\frac{(x+1)\cdot\ln(x+1)-(x-1)\cdot\ln(x-1)}{(x-1)\cdot(x+1)\cdot\left(\ln(x+1)\right)^2}$
efdc4110-cf56-4f37-bf54-40fdd5d58145
differential_calc
false
null
Compute the limit using L'Hopital's Rule: $$ \lim_{x \to \infty} \left(x - x^2 \cdot \ln\left(1 + \frac{ 1 }{ x }\right)\right) $$
The final answer: $\frac{1}{2}$
efe8b07b-20ef-4acb-a3a8-924f76bbb728
differential_calc
false
null
Find all values of the constant $c$ such that the limit $$ \lim_{x \to -\infty} \left(\frac{ 3^{c \cdot x}+1 }{ 3^{2 \cdot x}+1 }\right) $$ exists. Enter the range for the constant $c$ as an interval of the real line.
The final answer: $[0,\infty)$
f04a641b-4ad9-445a-99a6-43a8def62a2f
integral_calc
false
null
Compute the integral: $$ \int \frac{ 1 }{ (x+4) \cdot \sqrt{x^2+2 \cdot x+5} } \, dx $$
$\int \frac{ 1 }{ (x+4) \cdot \sqrt{x^2+2 \cdot x+5} } \, dx$ = $C+\frac{1}{\sqrt{13}}\cdot\ln\left(\sqrt{13}-4-x-\sqrt{x^2+2\cdot x+5}\right)-\frac{1}{\sqrt{13}}\cdot\ln\left(4+\sqrt{13}+x+\sqrt{x^2+2\cdot x+5}\right)$
f05e9aaf-c4af-4097-b180-bbbce6a70c0a
precalculus_review
false
null
Use the Rational Zero Theorem to find all real zeros of the following polynomial: $p(x) = x^3 - 8 \cdot x^2 + 17 \cdot x - 10$
The real zeros are $1$, $2$, $5$
f06583ca-72cf-40eb-a419-128a961eea6e
integral_calc
false
null
Compute the integral: $$ -\int \frac{ \sin\left(\frac{ x }{ 3 }\right)^4 }{ \cos\left(\frac{ x }{ 3 }\right)^2 } \, dx $$
$-\int \frac{ \sin\left(\frac{ x }{ 3 }\right)^4 }{ \cos\left(\frac{ x }{ 3 }\right)^2 } \, dx$ = $-\frac{3\cdot\sin\left(\frac{x}{3}\right)^3}{\cos\left(\frac{x}{3}\right)}+\frac{3}{2}\cdot x-\frac{9}{4}\cdot\sin\left(\frac{2\cdot x}{3}\right)+C$
f0abc5d4-cb46-4522-a5e4-08a47caf8212
integral_calc
false
null
Compute the integral: $$ \int \sqrt[3]{x \cdot \left(8-x^2\right)} \, dx $$
$\int \sqrt[3]{x \cdot \left(8-x^2\right)} \, dx$ = $C+\frac{1}{3}\cdot\left(2\cdot\ln\left(\left|1+\sqrt[3]{\frac{8}{x^2}-1}^2-\sqrt[3]{\frac{8}{x^2}-1}\right|\right)-4\cdot\ln\left(\left|1+\sqrt[3]{\frac{8}{x^2}-1}\right|\right)-4\cdot\sqrt{3}\cdot\arctan\left(\frac{1}{\sqrt{3}}\cdot\left(2\cdot\sqrt[3]{\frac{8}{x^2}-1}-1\right)\right)\right)+\frac{4\cdot\sqrt[3]{\frac{8}{x^2}-1}}{1+\sqrt[3]{\frac{8}{x^2}-1}^3}$
f0b46da5-b7cf-4d8a-81ae-e3ff591ba59c
precalculus_review
false
null
Solve $|3 \cdot x - 11| = 4 \cdot x - 3$.
The final answer: $x=2$
f12059b7-639d-4813-96ca-8ce7814a6f55
multivariable_calculus
false
null
Find points on the curve at which the tangent line is horizontal or vertical: $$ x = \frac{ 3 \cdot t }{ 1+t^3 }, \quad y = \frac{ 3 \cdot t^2 }{ 1+t^3 } $$
1. Horizontal: $P(0,0)$, $P\left(\sqrt[3]{2},\sqrt[3]{4}\right)$ 2. Vertical: $P\left(\sqrt[3]{4},\sqrt[3]{2}\right)$
f124cb60-bc4d-44b2-b851-fd1aef9a1bfb
integral_calc
false
null
Solve the integral: $$ \int 22 \cdot \cot(-11 \cdot x)^5 \, dx $$
$\int 22 \cdot \cot(-11 \cdot x)^5 \, dx$ = $C+\frac{1}{2}\cdot\left(\cot(11\cdot x)\right)^4+\ln\left(1+\left(\cot(11\cdot x)\right)^2\right)-\left(\cot(11\cdot x)\right)^2$
f1283a97-29cb-42c8-a96e-42213e587522
differential_calc
false
null
Calculate the derivative of the function $r = 2 \cdot \ln\left(\sqrt[6]{\frac{ 1+\tan(3 \cdot \varphi) }{ 1-\tan(3 \cdot \varphi) }}\right)$.
$r'$ = $2\cdot\sec(6\cdot\varphi)$
f13796c5-a85c-4895-983c-ead174a245bc
multivariable_calculus
false
null
Find the moment of inertia of one arch of the cycloid $x = a \cdot \left(t - \sin(t)\right)$, $y = a \cdot \left(1 - \cos(t)\right)$ relative to the x-axis.
Moment of Inertia: $\frac{256}{15}\cdot a^3$
f1e83625-9780-41d5-9516-ace9a7d12801
precalculus_review
false
null
Suppose a function $f(x)$ is periodic with the period $T$. What is the period of the function $f(a \cdot x + b)$, when $a > 0$?
The final answer: $\frac{T}{a}$
f1efd818-8385-44fb-ac8f-8bf513dfc2e8
algebra
false
null
Solve the equation for $x$: $$ \frac{ 3 }{ \log_{2}(10) }-\log_{10}(x-9)=\log_{10}(44) $$
$x$ = $\frac{101}{11}$
f22f4c69-3c17-40de-9b09-9d9e2366f174
sequences_series
false
null
Suppose that $\sum_{n=0}^\infty\left(a_{n} \cdot x^n\right)$ converges to a function $y$ such that $y'' - y' + y = 0$ where $y(0) = 1$ and $y'(0) = 0$. Compute $a_{0}$, ..., $a_{5}$.
The final answer: $a_{0}$: $1$ $a_{1}$: $0$ $a_{2}$: $\frac{1}{2}$ $a_{3}$: $\frac{1}{6}$ $a_{4}$: $0$ $a_{5}$: $-\frac{1}{120}$
f26b7d10-ebe6-4a28-b7ac-df7c888f2ccf
precalculus_review
false
null
Solve the logarithmic equation exactly, if possible: $\ln(x) + \ln(x-2) = \ln(4)$ If the solution does not exist, enter undefined.
$x$ = $1+\sqrt{5}$
f29b52bc-52d0-49f7-977d-cf9effc0cd00
algebra
false
null
Given the rational function $f(x) = \frac{ x^2-1 }{ x^3+9 \cdot x^2+14 \cdot x }$, find 1. the domain (in interval notation), 2. vertical asymptotes (in the form $x=a$), 3. horizontal asymptotes (in the form $y=c$).
1. The domain in interval notation is $(-\infty,-7)\cup(-7,-2)\cup(-2,0)\cup(0,\infty)$ 2. Vertical asymptotes of $f(x)$: $x=-7$, $x=0$, $x=-2$ 3. Horizontal asymptotes of $f(x)$: $y=0$
f2ac69f4-7404-4834-a8cc-1658a2cdda96
sequences_series
false
null
Evaluate $\int_{0}^{\frac{ \pi }{ 2 }}{\sin\left(\theta\right)^4 d \theta}$ and $\int_{0}^{\frac{ \pi }{ 2 }}{\sin\left(\theta\right)^2 d \theta}$ in the approximation $T=4 \cdot \sqrt{\frac{ L }{ g }} \cdot \int_{0}^{\frac{ \pi }{ 2 }}{\left(1+\frac{ 1 }{ 2 } \cdot k^2 \cdot \sin\left(\theta\right)^2+\frac{ 3 }{ 8 } \cdot k^4 \cdot \sin\left(\theta\right)^4\right) d \theta}$ to obtain an improved estimate for $T$.
$T$: $2\cdot\pi\cdot\sqrt{\frac{L}{g}}\cdot\left(1+\frac{k^2}{4}+\frac{9\cdot k^4}{64}\right)$
f3483e15-54ea-41ca-9681-11eb71d774d0
differential_calc
true

Given $f(t) = g(t) \cdot h(t)$, find $f'(2)$ using the table below:
$f'(2)$ = $-15$
f38c8513-234c-4b70-b306-880df56aa4e9
integral_calc
false
null
Evaluate the integral: $$ I = \int 3 \cdot \ln\left(\sqrt{2-x}+\sqrt{2+x}\right) \, dx $$
The final answer: $3\cdot x\cdot\ln\left(\sqrt{2-x}+\sqrt{2+x}\right)-\frac{3}{2}\cdot\left((C+x)-2\cdot\arcsin\left(\frac{x}{2}\right)\right)$
f395b144-92c4-40f4-8eb6-84b365bd4f7c
algebra
false
null
Use the vertex $P(h,k) = P(-4,-5)$ and a point $P(x,y) = P(-2,7)$ on the graph of $f(x)$ to find the general form of the quadratic function.
The final answer: $f(x)=3\cdot x^2+24\cdot x+43$
f3c9a461-3a76-4213-94ae-ea4760b8a013
differential_calc
true

| | $x$ | $f$ | $f'$ | | --- | --- | --- | --- | | $0$ | $3$ | $-1$ | The function $f$ is a differentiable function. The table above shows values of $f$ and $f'$, the derivative of $f$, at selected values of $x$. The graph of $g$ is shown at right. Given $h(x) = (3 \cdot g(x) + 2 \cdot x) \cdot (f(x) - 2)$, find $h'(0)$. | | | --- | --- | --- | --- | --- | --- | --- | --- |
$h'(0)$ = $\frac{1}{2}$
f3e17598-93ba-4014-916f-e790a5525c7a
algebra
true

The graph below illustrates the decay of a radioactive substance over $t$ days: Use the graph to estimate the average decay rate from $t=5$ to $t=10$.
The final answer: $-\frac{4}{5}$
f4126597-791b-4deb-99db-5c16af183608
multivariable_calculus
false
null
Consider points $A(3,-1,2)$, $B(2,1,5)$, and $C(1,-2,-2)$. 1. Find the area of parallelogram $ABCD$ with adjacent sides $\vec{AB}$ and $\vec{AC}$. 2. Find the area of triangle $ABC$. 3. Find the distance from point $A$ to line $BC$.
1. $A$ = $5\cdot\sqrt{6}$ 2. $A$ = $\frac{5\cdot\sqrt{6}}{2}$ 3. $d$ = $\frac{5\cdot\sqrt{6}}{\sqrt{59}}$
f46c0483-d278-4a55-af5b-bc6b958126ff
integral_calc
false
null
Solve the integral: $$ \int \left(\frac{ x+2 }{ x-2 } \right)^{\frac{ 3 }{ 2 }} \, dx $$
$\int \left(\frac{ x+2 }{ x-2 } \right)^{\frac{ 3 }{ 2 }} \, dx$ = $C+\sqrt{\frac{x+2}{x-2}}\cdot(x-10)-6\cdot\ln\left(\left|\frac{\sqrt{x-2}-\sqrt{x+2}}{\sqrt{x-2}+\sqrt{x+2}}\right|\right)$
f47cb838-a60c-461f-8c9b-9143e021222f
integral_calc
false
null
Use integration by substitution and/or by parts to compute the integral: $$ \int x \cdot \ln(5+x) \, dx $$
The final answer: $D+5\cdot(x+5)+\left(\frac{1}{2}\cdot(x+5)^2-5\cdot(x+5)\right)\cdot\ln(x+5)-\frac{1}{4}\cdot(x+5)^2$
f4aa6ca1-ce0a-4dd9-bd2d-056d17e9d173
precalculus_review
false
null
Find the period of the function $f(x) = \left(\sin(x)\right)^4 + \left(\cos(x)\right)^4$.
The final answer: $T=\frac{\pi}{2}$
f4bc1799-6bb0-4f5b-8914-a951b5560142
multivariable_calculus
false
null
Find the moment of inertia of one arch of the cycloid $x=a \cdot \left(3 \cdot t-\sin(3 \cdot t)\right)$, $y=a \cdot \left(1-\cos(3 \cdot t)\right)$ relative to the x-axis.
Moment of Inertia: $\frac{256}{15}\cdot a^3$
f50abb06-3b30-462d-b87a-b921c7c38f0c
multivariable_calculus
false
null
For the function $f(x,y) = 2 \cdot x \cdot y \cdot e^{-x^2-y^2}$, use the second derivative test to identify any critical points and determine whether each critical point is a local minimum, local maximum, saddle point, or none of these.
$f$ has a local minimum at $P\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$, $P\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ . $f$ has a local maximum at $P\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, $P\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ . $f$ has a saddle point at $P(0,0)$ . The second derivative test is inconclusive at None .
f61c3d0e-e73d-42ec-9f3a-0c30d2022bef
precalculus_review
false
null
Identify the set of real numbers for which $x \cdot (x-1) \cdot (x-4) \le 0$.
The final answer: $(-\infty,0]\cup[1,4]$
f6a631ca-4b2b-4716-be3b-538b249f543e
multivariable_calculus
false
null
Calculate the average lengths of all vertical chords of the parabola $\frac{ x^2 }{ a^2 } - \frac{ y^2 }{ b^2 } = 1$ over the interval $a \le x \le 2 \cdot a$.
The final answer: $\mu=b\left(2\cdot\sqrt{3}-\ln\left(2+\sqrt{3}\right)\right)$
f6ce3b4f-29e4-44a8-832c-9912388bdc0f
differential_calc
true

Graph of $f$: Let $f$ be a function whose graph, consisting of four line segments, is shown in the figure above. Let $g$ be the function defined by $g(x) = x + f(x)$. At what value of $x$ does $g(x)$ attain its absolute maximum on the interval $[-3,5]$?
The function $g(x)$ attains its absolute maximum on the interval $[-3,5]$ at $x$ = $5$
f6f3fc6f-7ebb-4b8d-8bf9-3dee49a8e6c6
integral_calc
true

Let $R$ and $S$ in the figure above be defined as follows: $R$ is the region in the first and second quadrants bounded by the graphs of $y = (x-1)^2 \cdot (x+2)$ and $y = \ln(x+3)$. $S$ is the shaded region in the first quadrant bounded by the two graphs, the $x$-axis, and the $y$-axis. The region $R$ is the base of a solid. For this solid, each cross section perpendicular to the $x$-axis is an isosceles right triangle with one leg across the base of the solid. Write, but do not evaluate, an integral expression that gives the volume of the solid.
$V$ = $\frac{1}{2}\cdot\int_{-2}^{0.278}\left((x-1)^2\cdot(x+2)-\ln(x+3)\right)^2dx$
f715864e-78fd-4609-a76c-00ec0430b38f
multivariable_calculus
false
null
Given $\vec{r}(t) = \left\langle e^t \cdot \cos(t), e^t \cdot \sin(t), e^t \right\rangle$. Find the tangential and normal components of acceleration.
The final answer: 1. The tangential component of acceleration, $a_{t}$, is: $\sqrt{3}\cdot e^t$ 2. The normal component of acceleration, $a_{N}$, is: $\sqrt{2}\cdot e^t$
f73136c7-5fe8-4f38-8765-b1ec63b449af
sequences_series
false
null
Expand the function $f(x) = e^x$ in terms of powers of $x + 1$.
The final answer: $e^x=\frac{1}{e}+(x+1)\cdot\frac{1}{e}+\frac{(x+1)^2}{2!}\cdot\frac{1}{e}+\frac{(x+1)^3}{3!}\cdot\frac{1}{e}+\frac{(x+1)^4}{4!}\cdot e^{\xi}$
f75e7bcb-5148-4043-96cb-45ed33624be4
precalculus_review
false
null
If $y=100$ at $t=4$ and $y=10$ at $t=8$, when does $y=1$? Use $y=y_{0} \cdot e^{k \cdot t}$, where $y_{0}$ is the beginning amount, $y$ is the ending amount, $k$ is the growth or decay rate, and $t$ is time.
$y$ = 1 at $t$ = $12$
f79b682d-3c4b-4608-9f46-0f999d9bc010
differential_calc
true

Let $g(x) = \frac{ |x-3| }{ x-3 }$. Values of $h(x)$ are shown in the table below and $f(x)$ is the graph shown below. | | $x$ | $2.9$ | $2.99$ | $2.999$ | $3.001$ | $3.01$ | $3.1$ | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | $h(x)$ | $-5.58$ | $-5.959$ | $-5.996$ | $-6.004$ | $-6.039$ | $-6.38$ | | | Evaluate $\lim_{x \to 3^{-}}\left(\frac{ 2 \cdot f(x) + g(x) }{ \left(h(x)\right)^2 }\right)$.
$\lim_{x \to 3^{-}}\left(\frac{ 2 \cdot f(x) + g(x) }{ \left(h(x)\right)^2 }\right)$ = $-\frac{5}{36}$
f7a7e2da-76ef-463e-b7ab-23d607c12f2d
differential_calc
true

Use the following graph and find: $\lim_{x \to 1}\left(f(x)\right)$
$\lim_{x \to 1}\left(f(x)\right)$: None
f7adf486-9276-4aad-b8ab-9ff6c2894646
precalculus_review
false
null
Simplify the radical expression: $$ \frac{ 4 \cdot \sqrt{2 \cdot n} }{ \sqrt{16 \cdot n^4} } $$
The final answer: $\frac{\sqrt{2}}{n^{\frac{3}{2}}}$
f7c85f4d-2628-4193-9579-41041b20f083
differential_calc
false
null
Differentiate the function $$ f(x) = \frac{ 5 \cdot x^3-\sqrt[3]{x}+6 \cdot x+2 }{ \sqrt{x} } $$
$\frac{ d }{d x}\left(\frac{ 5 \cdot x^3-\sqrt[3]{x}+6 \cdot x+2 }{ \sqrt{x} }\right)$: $\frac{18\cdot x\cdot\sqrt[6]{x}+75\cdot x^3\cdot\sqrt[6]{x}+\sqrt{x}-6\cdot\sqrt[6]{x}}{6\cdot x\cdot x^{\frac{2}{3}}}$
f85314b7-0e73-481b-aadb-9b48f8cf8fbc
algebra
false
null
Rewrite the quadratic expression $2 \cdot x^2 - 6 \cdot x - 9$ by completing the square.
$2 \cdot x^2 - 6 \cdot x - 9$ = $2\cdot(x-1.5)^2-13.5$
f89bd354-18c9-4f31-b91f-cf6421e24921
sequences_series
false
null
Compute the first $6$ nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $f(x) = \sin(x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)$.
$f(x)$ = $\frac{1}{34560\cdot\sqrt{2}}\cdot\left(288\cdot x^5+1440\cdot x^4-5760\cdot x^3-17280\cdot x^2+34560\cdot x+34560\right)+\cdots$
f8d1def5-7d5c-4ab3-a9ca-2baa0bc33b11
precalculus_review
false
null
$P = \left(x, \frac{ \sqrt{7} }{ 3 }\right)$, $x<0$ is a point on the unit circle. 1. Find the (exact) missing coordinate value of the point. 2. Find the values of the three trigonometric functions $\sin\left(\theta\right)$, $\cos\left(\theta\right)$, $\tan\left(\theta\right)$ for the angle $\theta$ with a terminal side that passes through point $P$. Rationalize denominators.
1. The (exact) missing coordinate value of the point is: $-\frac{\sqrt{2}}{3}$ 2. The values of the three trigonometric functions are: * $\sin\left(\theta\right) = $\frac{\sqrt{7}}{3}$$ * $\cos\left(\theta\right) = $-\frac{\sqrt{2}}{3}$$ * $\tan\left(\theta\right) = $-\frac{\sqrt{14}}{2}$$
f8d9c275-c54e-423d-b660-60beec9f19d0
algebra
false
null
Find the dimensions of the box whose length is twice as long as the width, whose height is $2$ inches greater than the width, and whose volume is $192$ cubic inches.
The dimensions of the box are $4$, $6$, $8$
f8f1b940-4771-4e79-b29b-64ddff634da6
differential_calc
false
null
Given $y = \frac{ 2 }{ 5 } \cdot x^6 + \frac{ 6 }{ 5 } \cdot x^5 + x^4 + 2$, find where the function is 1. concave up 2. concave down 3. point(s) of inflection
1. Concave up: $(-\infty,-1)$, $(-1,0)$, $(0,\infty)$ 2. Concave down: None 3. Point(s) of Inflection: None
f928de60-dedf-4c5b-8ffc-36c6b402744a
differential_calc
false
null
Sketch the curve: $$ y = 9 \cdot x^2 \cdot e^{\frac{ 1 }{ 3 \cdot x }} $$ Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-\infty,0)\cup(0,\infty)$ 2. Vertical asymptotes: $x=0$ 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(\frac{1}{6},\infty\right)$ 6. Intervals where the function is decreasing: $(-\infty,0)$, $(0,\infty)$ 7. Intervals where the function is concave up: $(-\infty,0)$, $(0,\infty)$ 8. Intervals where the function is concave down: None 9. Points of inflection: None
f9845500-b43b-4187-9da5-1babc7852f25
differential_calc
false
null
Calculate the derivative of the function $r = \ln\left(\sqrt[4]{\frac{ 1+\tan(\varphi) }{ 1-\tan(\varphi) }}\right)$.
$r'$ = $\frac{1}{2}\cdot\sec(2\cdot\varphi)$
f98550db-7106-4a40-9fca-348aa446b703
algebra
true

Using the given graphs of $f(x)$ and $g(x)$, find $g\left(g(2)\right)$.
The final answer: $g\left(g(2)\right)$ = $2$
f9e23b20-cd31-4e53-bba3-62353f283cd3
algebra
false
null
The radius of the right circular cylinder is $\frac{ 1 }{ 3 }$ meter greater than the height. The volume is $\frac{ 74 \cdot \pi }{ 9 }$ cubic meters. Find the dimensions.
$r$: $\frac{1+5.40740373}{3}$ $h$: $1.80246791$
fa6de80d-c556-45a5-ba55-741e46642251
integral_calc
false
null
Compute the integral: $$ \int \frac{ 3 }{ 3+\sin(2 \cdot x)+\cos(2 \cdot x) } \, dx $$
$\int \frac{ 3 }{ 3+\sin(2 \cdot x)+\cos(2 \cdot x) } \, dx$ = $C+\frac{3}{\sqrt{7}}\cdot\arctan\left(\frac{1}{\sqrt{7}}\cdot\left(1+2\cdot\tan(x)\right)\right)$
fa98708a-a7a3-4056-bfa4-2b0a16fea068
multivariable_calculus
false
null
Use the second derivative test to identify any critical points of the function $f(x,y) = x^2 \cdot y^2$ and determine whether each critical point is a maximum, minimum, saddle point, or none of these.
Maximum: None Minimum: $P(0,0)$ Saddle point: None The second derivative test is inconclusive at: None
fa9976dd-852a-4d21-bce4-318821b7397d
integral_calc
true

Let $A$ and $B$ be regions bounded by the graph of $f(x) = -3 \cdot \cos(x)$ and the $x$-axis for $-\pi \le x \le 0$. 1. Find the volume of the solid generated when $A$ is revolved about the $x$-axis. 2. Find the volume of the solid generated when $B$ is revolved about the $y$-axis.
1. $22.207$ units³ 2. $10.759$ units³
fab49e1b-7b62-4ff1-9344-915c84b6cf60
multivariable_calculus
true

Find the surface area of the lemniscate: $\rho^2 = a^2 \cdot \cos(2 \cdot \varphi)$.
$A$ = $a^2$
fad0653d-12d0-4153-8e85-7fbd01db1c0f
multivariable_calculus
false
null
Use the second derivative test to identify any critical points of the function $f(x,y) = 8 \cdot x \cdot y \cdot (x+y) + 7$, and determine whether each critical point is a maximum, minimum, saddle point, or none of these.
Maximum: None Minimum: None Saddle point: None The second derivative test is inconclusive at: $P(0,0)$
fb6418ae-3440-4258-9388-89d799fd859a
sequences_series
false
null
Find the power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$.
$f(x) \cdot g(x)$ = $\sum_{n=2}^\infty\left(\frac{1}{6}\cdot n\cdot\left(n^2-1\right)\cdot x^n\right)$
fbfe5f15-e991-40c9-b306-3e83535db351
multivariable_calculus
false
null
Find the equation of the tangent line to the curve: $r = 3 + \cos(2 \cdot t)$, $t = \frac{ 3 \cdot \pi }{ 4 }$.
$y$ = $\frac{1}{5}\cdot\left(x+\frac{3}{\sqrt{2}}\right)+\frac{3}{\sqrt{2}}$
fc9fb6e0-d325-42da-b6b4-4f51c745ed76
multivariable_calculus
false
null
Find and classify all critical points of the function $f(x,y) = x \cdot y \cdot (1-7 \cdot x-9 \cdot y)$.
Points of local minima: None Points of local maxima: $P\left(\frac{1}{21},\frac{1}{27}\right)$ Saddle points: $P(0,0)$, $P\left(\frac{1}{7},0\right)$, $P\left(0,\frac{1}{9}\right)$
fcada4da-798e-438e-8bfd-3efa21ce1322
integral_calc
false
null
Compute the integral: $$ \int x \cdot \arctan(2 \cdot x)^2 \, dx $$
$\int x \cdot \arctan(2 \cdot x)^2 \, dx$ = $\frac{1}{16}\cdot\left(2\cdot\left(\arctan(2\cdot x)\right)^2+2\cdot\ln\left(4\cdot x^2+1\right)+8\cdot x^2\cdot\left(\arctan(2\cdot x)\right)^2-8\cdot x\cdot\arctan(2\cdot x)\right)+C$
fcbb2928-b8f4-4a3c-9fd8-1e095d95bd28
algebra
false
null
When hired at a new job selling electronics, you are given two pay options: Option A: Base salary of $20,000$ USD a year with a commission of $12\%$ of your sales. Option B: Base salary of $26,000$ USD a year with a commission of $3\%$ of your sales. How much electronics would you need to sell for Option A to produce a larger income? Give your answer either exactly or rounded to two decimal places.
The final answer: $66666.67$
fce0ff42-571f-457d-bd35-3be8611edff9
algebra
true

Use the graph in the figure, which shows the profit, $y$, in thousands of dollars, of a company in a given year, $t$, where $t$ represents the number of years since $1980$: Find the $y$-intercept.
$y$-intercept: $P(0,-300)$
fcf8b9bc-dc7a-4385-82e3-98bd3ce3841e
precalculus_review
false
null
Use the double-angle formulas to evaluate the integral: $$ \int_{0}^\pi \sin(x)^4 \, dx $$
$\int_{0}^\pi \sin(x)^4 \, dx$ = $\frac{3\cdot\pi}{8}$
fd219d83-cf3d-41b2-9d26-f01e81827b91
integral_calc
false
null
Compute the integral: $$ 3 \cdot \int \cos(2 \cdot x)^6 \, dx $$
$3 \cdot \int \cos(2 \cdot x)^6 \, dx$ = $\frac{3}{8}\cdot\sin(4\cdot x)+\frac{9}{128}\cdot\sin(8\cdot x)+\frac{15}{16}\cdot x-\frac{1}{32}\cdot\left(\sin(4\cdot x)\right)^3+C$
fd3587b1-b0c7-48de-8d35-280390009cb4
precalculus_review
false
null
Use the double-angle formulas to evaluate the integral: $$ \int \sin(x)^2 \cdot \cos(2 \cdot x)^2 \, dx $$
$\int \sin(x)^2 \cdot \cos(2 \cdot x)^2 \, dx$ = $\frac{x}{4}-\frac{3}{16}\cdot\sin(2\cdot x)+\frac{1}{16}\cdot\sin(4\cdot x)-\frac{1}{48}\cdot\sin(6\cdot x)+C$
fd553420-a490-4c12-a21d-7d301ef75783
multivariable_calculus
false
null
Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.) $f(x,y,z) = \sin\left(x+z^y\right)$.
$f_{xx}(x,y,z)$ = $-\sin\left(x+z^y\right)$ $f_{xy}(x,y,z)$ = $f_{yx}(x,y,z)$ = $-z^y\cdot\ln(z)\cdot\sin\left(x+z^y\right)$ $f_{yy}(x,y,z)$ = $-z^y\cdot\left(\ln(z)\right)^2\cdot\left(-\cos\left(x+z^y\right)+z^y\cdot\sin\left(x+z^y\right)\right)$ $f_{yz}(x,y,z)$ = $f_{zy}(x,y,z)$ = $z^{-1+y}\cdot\left(\cos\left(x+z^y\right)\cdot\left(1+y\cdot\ln(z)\right)-y\cdot z^y\cdot\ln(z)\cdot\sin\left(x+z^y\right)\right)$ $f_{zz}(x,y,z)$ = $y\cdot z^{-2+y}\cdot\left((-1+y)\cdot\cos\left(x+z^y\right)-y\cdot z^y\cdot\sin\left(x+z^y\right)\right)$ $f_{xz}(x,y,z)$ = $f_{zx}(x,y,z)$ = $-y\cdot z^{-1+y}\cdot\sin\left(x+z^y\right)$
fd5e835f-ff53-4b16-9353-bc32e4289773
multivariable_calculus
false
null
Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y) = x^2 - y^2$ with the constraint $x + 6 \cdot y = 4$.
Minimum value of the function $f(x,y)$ is $-\frac{16}{35}$ Maximum value of the function $f(x,y)$ is None
fd93bc12-3ce3-49a6-bcc2-67359cb0d155
differential_calc
false
null
Find $\frac{d^3}{dx^3}f(x)$, given $f(x) = \ln\left(\frac{ x+7 }{ x-7 }\right)$.
The final answer: $\frac{d^3}{dx^3}f(x)=-\frac{84\cdot x^2+1372}{\left(x^2-49\right)^3}$
fd9d9457-b5dd-48b4-abae-3ca1024ec63c
differential_calc
true

Given $h(x) = f(x) \cdot g(x)$, find $h'(1)$ using the table below:
$h'(1)$ = $16$
fe42fdde-3ec3-49f2-af06-ec452da37893
integral_calc
false
null
Solve the integral: $$ \int \frac{ -\sqrt[3]{2 \cdot x} }{ \sqrt[3]{(2 \cdot x)^2}-\sqrt{2 \cdot x} } \, dx $$
$\int \frac{ -\sqrt[3]{2 \cdot x} }{ \sqrt[3]{(2 \cdot x)^2}-\sqrt{2 \cdot x} } \, dx$ = $C-3\cdot\left(\frac{1}{2}\cdot\sqrt[6]{2\cdot x}^2+\frac{1}{3}\cdot\sqrt[6]{2\cdot x}^3+\frac{1}{4}\cdot\sqrt[6]{2\cdot x}^4+\sqrt[6]{2\cdot x}+\ln\left(\left|\sqrt[6]{2\cdot x}-1\right|\right)\right)$
fe510a69-db18-4182-a55e-c5e84eba20f5
multivariable_calculus
false
null
Calculate the double integral $\int\int_{R}{\left(x^2+y^2\right) d A}$, where $R$ is the parallelogram with the sides $y=x$, $y=x+2$, $y=2$, and $y=6$.
The final answer: $224$
fe62dec1-a9c2-4d3b-a1e6-e24baaf52c55
multivariable_calculus
false
null
Find the curvature for the vector function: $\vec{r}(t) = \left\langle \sqrt{2} \cdot e^t, \sqrt{2} \cdot e^{-t}, 2 \cdot t \right\rangle$.
The final answer: $\frac{2\cdot e^{2\cdot t}}{2+2\cdot e^{4\cdot t}+4\cdot e^{2\cdot t}}$
fe917e4b-795e-455a-926b-e27828a7f48d
precalculus_review
true

The given graph is of the form $y = A \cdot \sin(B \cdot x)$ or $y = A \cdot \cos(B \cdot x)$, where $B > 0$. Write the equation of the graph.
The equation of the graph is: $y=\cos(2\cdot\pi\cdot x)$
fed13bfa-aef9-4bdd-9b1b-538a293f369e
precalculus_review
false
null
Multiply the rational expressions and express the product in simplest form: $$ \frac{ x^2-x-6 }{ 2 \cdot x^2+x-6 } \cdot \frac{ 2 \cdot x^2+7 \cdot x-15 }{ x^2-9 } $$
The final answer: $\frac{x+5}{x+3}$
fed9d0b7-506f-441f-b52a-8f0e24292fd1
integral_calc
false
null
Compute the integral: $$ \int \frac{ 2 \cdot x+\sqrt{2 \cdot x-3} }{ 3 \cdot \sqrt[4]{2 \cdot x-3}+\sqrt[4]{(2 \cdot x-3)^3} } \, dx $$
$\int \frac{ 2 \cdot x+\sqrt{2 \cdot x-3} }{ 3 \cdot \sqrt[4]{2 \cdot x-3}+\sqrt[4]{(2 \cdot x-3)^3} } \, dx$ = $C+2\cdot\left(9\cdot\sqrt[4]{2\cdot x-3}+\frac{1}{5}\cdot\sqrt[4]{2\cdot x-3}^5-\frac{2}{3}\cdot\sqrt[4]{2\cdot x-3}^3-\frac{27}{\sqrt{3}}\cdot\arctan\left(\frac{1}{\sqrt{3}}\cdot\sqrt[4]{2\cdot x-3}\right)\right)$
fef6c9b8-267b-4fd6-83ad-75e555451080
sequences_series
false
null
Expand the function $f(x) = \ln\left(1+\frac{ x }{ 5 }\right)$ given on the interval $[0,1]$ in powers of $x$ using the Maclaurin formula. Estimate the error allowed with the retention of the first ten members. Submit as your final answer: 1. the resulting expansion of the function (the first ten terms) 2. the estimate of the absolute value of the remainder term (in the form of an inequality for $\left|R_{10}(x)\right|$)
1. $\frac{x}{5}-\frac{x^2}{5^2\cdot2}+\frac{x^3}{5^3\cdot3}-\frac{x^4}{5^4\cdot4}+\frac{x^5}{5^5\cdot5}-\frac{x^6}{5^6\cdot6}+\frac{x^7}{5^7\cdot7}-\frac{x^8}{5^8\cdot8}+\frac{x^9}{5^9\cdot9}$ 2. $\left|R_{10}(x)\right|<\frac{1}{5^{10}\cdot10}$
ff08d451-e6d0-4570-b370-cb5504ceda3d
differential_calc
true

Use the graph of the function $y = g(x)$ shown here to find $\lim_{x \to 0}\left(g(x)\right)$, if possible. Estimate when necessary.
$\lim_{x \to 0}\left(g(x)\right)$ = None
ff11c6e0-574a-477e-9ea3-0232aa803f21
differential_calc
false
null
Find the extrema of a function $y = \frac{ x^4 }{ 4 } - \frac{ 2 \cdot x^3 }{ 3 } - \frac{ x^2 }{ 2 } + 2$. Then determine the largest and smallest value of the function when $-2 \le x \le 4$.
1. Extrema points: $P\left(\frac{2-2\cdot\sqrt{2}}{2},1.969\right)$, $P(0,2)$, $P\left(\frac{2+2\cdot\sqrt{2}}{2},-1.8023\right)$ 2. The largest value: $\frac{46}{3}$ 3. The smallest value: $-1.8023$
ff6817e6-7ee7-450d-981d-fa96e8f2d0d4
differential_calc
false
null
Given $y = \frac{ 1 }{ \sqrt{a \cdot x^2 + b \cdot x + c} }$, evaluate $D = y \cdot y'' - 3 \cdot \left(y' \right)^2 + y^4$.
The final answer: $D=\frac{1-a}{\left(a\cdot x^2+b\cdot x+c\right)^2}$
ff7e301b-1784-4bb0-8251-948887a6254b
multivariable_calculus
false
null
The distances of all the points of a curve from two fixed points $M$ and $N$ with coordinates $(c,0)$ and $(-c,0)$ are equal to $16$. Find the equation of the curve.
The final answer: $\frac{x^2}{64}+\frac{y^2}{\left(64-c^2\right)}=1$
ffeb1d68-82f1-4622-8c63-c49ecaa82c66
precalculus_review
false
null
A professor asks her class to report the amount of time $t$ they spent writing two assignments. Most students report that it takes them about $45$ minutes to type a four-page assignment and about $90$ minutes to type a nine-page assignment. 1. Find the linear function $y = N(t)$ that models this situation, where $N$ is the number of pages typed and $t$ is the time in minutes. 2. Use part a. to determine how many pages can be typed in $120$ minutes (round to the nearest integer). 3. Use part a. to determine how long it takes to type a $20$-page assignment.
1. $N(t)$ = $\frac{1}{9}\cdot t-1$ 2. $12$ 3. $189$
ffee282b-ad0f-40e6-a100-9ed7da950b5a
integral_calc
false
null
Compute the integral: $$ -\int \cos(6 \cdot x)^6 \, dx $$
$-\int \cos(6 \cdot x)^6 \, dx$ = $C+\frac{1}{288}\cdot\left(\sin(12\cdot x)\right)^3-\frac{1}{24}\cdot\sin(12\cdot x)-\frac{1}{128}\cdot\sin(24\cdot x)-\frac{5}{16}\cdot x$