uuid
stringlengths
36
36
subject
stringclasses
6 values
has_image
bool
2 classes
image
stringclasses
160 values
problem_statement
stringlengths
32
784
golden_answer
stringlengths
7
1.13k
d12b5094-3b3b-454d-a3b5-4b488eeee7c8
sequences_series
false
null
Express the series $\sum_{n=1}^\infty \left(\frac{ 1 }{ (x-3)^{2 \cdot n-1} }-\frac{ 1 }{ (x-2)^{2 \cdot n-1} }\right)$ as a rational function.
$\sum_{n=1}^\infty \left(\frac{ 1 }{ (x-3)^{2 \cdot n-1} }-\frac{ 1 }{ (x-2)^{2 \cdot n-1} }\right)$ = $\frac{x-3}{(x-3)^2-1}-\frac{x-2}{(x-2)^2-1}$
d1429fff-1216-40ad-8946-3dd3a5f2e620
multivariable_calculus
false
null
Find the equations of the common tangent lines to the following ellipses: 1. $ rac{ x^2 }{ 6 } + y^2 = 1$ 2. $ rac{ x^2 }{ 4 } + rac{ y^2 }{ 9 } = 1$
The equations are: $2\cdot x+y-5=0 \lor 2\cdot x+y+5=0 \lor 2\cdot x-y-5=0 \lor 2\cdot x-y+5=0$
d154f14e-4cc7-40dd-ae67-66d209b8bf88
integral_calc
false
null
Compute the integral: $$ \int \sin(5 \cdot x)^6 \cdot \cos(5 \cdot x)^2 \, dx $$
Answer is: $\frac{1}{32}\cdot x-\frac{1}{32}\cdot\frac{1}{20}\cdot\sin(20\cdot x)-\frac{1}{8}\cdot\frac{1}{10}\cdot\frac{1}{3}\cdot\sin(10\cdot x)^3+\frac{1}{128}\cdot x-\frac{1}{128}\cdot\frac{1}{40}\cdot\sin(40\cdot x)+C$
d16d84d7-3932-44f0-89ff-521caa493041
precalculus_review
false
null
Recall the following double-angle formulas: 1. $\sin\left(2 \cdot \theta\right) = 2 \cdot \sin\left(\theta\right) \cdot \cos\left(\theta\right)$ 2. $\cos\left(2 \cdot \theta\right) = 2 \cdot \cos\left(\theta\right)^2 - 1$ 3. $\cos\left(2 \cdot \theta\right) = 1 - 2 \cdot \sin\left(\theta\right)^2$ From the formulae, find appropriate expressions for the following, in terms of $\sin\left(2 \cdot \theta\right)$ or $\cos\left(2 \cdot \theta\right)$: [Note: your end answer may contain only one of them.] 1. $\sin\left(\theta\right)^2$ 2. $\cos\left(\theta\right)^2$
Part (a): $\sin\left(\theta\right)^2=\frac{1}{2}\cdot\left(1-\cos\left(2\cdot\theta\right)\right)$ Part (b): $\cos\left(\theta\right)^2=\frac{1}{2}\cdot\left(1+\cos\left(2\cdot\theta\right)\right)$
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
sequences_series
false
null
Compute the first 4 nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $f(x) = e^x \cdot \cos(x)$.
$f(x)$ = $1+x-\frac{x^3}{3}-\frac{x^4}{6}+\cdots$
d23ad7e7-ae9b-468a-b854-8452c64e0896
differential_calc
true

The ellipse $x^2 + 4 \cdot y^2 = 4$ and the parabola $4 \cdot y = 4 - 5 \cdot x^2$ intersect at the points $A$, $B$, and $C$ (see the figure below). Compute the tangent of the angle between the curves at all three intersection points.
1. The tangent of the angle at $A$ is $-27$ 2. The tangent of the angle at $B$ is $0$ 3. The tangent of the angle at $C$ is $27$
d24d7863-cfff-4e13-9077-843af80b36a4
differential_calc
false
null
Find the local minimum and local maximum values of the function $f(x) = \frac{ 3 }{ 4 } \cdot x^4 - 10 \cdot x^3 + 24 \cdot x^2 - 4$.
The point(s) where the function has a local minimum: $P(0,-4)$, $P(8,-516)$ The point(s) where the function has a local maximum: $P(2,24)$
d2a729e3-d012-4283-b8b4-1874c307c5b2
precalculus_review
false
null
Find zeros of $f(x) = \sqrt{x-3} + \sqrt{x+2} - \sqrt{2 \cdot x-5} - 2$
The final answer: $x=7$
d33534d4-e0dd-4da6-9c8e-02e5c4837211
integral_calc
false
null
Compute the integral: $$ \int \frac{ x^3-2 \cdot x^2+x }{ 3+2 \cdot x-x^2 } \, dx $$
$\int \frac{ x^3-2 \cdot x^2+x }{ 3+2 \cdot x-x^2 } \, dx$ = $-\frac{1}{2}\cdot x^2-2\cdot\ln\left(\left|x^2-2\cdot x-3\right|\right)-\ln\left(\left|\frac{x-3}{x+1}\right|\right)+C$
d34c2468-5dd2-4918-ac13-a2f46633fb66
differential_calc
true

Given the graph of $f(x)$ shown to the right, write the limit statement to describe the function's behavior around the neighborhood of $x=1$.
$\lim_{{x \to 1}} f(x) = $\lim_{x\to1}f(x)=0$$
d3cdc4b9-7a58-4198-ba50-e9f278bf2aa3
multivariable_calculus
false
null
Evaluate $L=\lim_{(x,y) \to (-1,1)}\left(\frac{ x \cdot y \cdot (x+y)-5 \cdot y \cdot (y+5)+5 \cdot x \cdot (x-5) }{ x^2+y^2+2 \cdot x \cdot y+5 \cdot x+5 \cdot y }\right)$.
The final answer: $L=-\frac{36}{5}$
d41983e6-eea1-4dfa-8060-ce53dcd25940
precalculus_review
false
null
A rental car company rents cars for a flat fee of $\$20$ and an hourly charge of $\$10.25$. Therefore, the total cost $C$ to rent a car is a function of the hours $t$ the car is rented plus the flat fee. 1. Write the formula for the function that models this situation. 2. Find the total cost to rent a car for 2 days and 7 hours. 3. Determine how long the car was rented if the bill is $\$432.73$.
1. The formula for the function is $C(t)$ = $10.25\cdot t+20$ 2. The total cost to rent a car is $ $583.75$ 3. The time of car rental in hours is $40.26634146$
d430a0dd-708d-4daa-8072-d39638d29242
differential_calc
false
null
A box is to be made with the following properties: 1. The length of the base, $l$, is twice the length of a width $w$. 2. The cost of material to be used for the lateral faces and the top of the box is three times the cost of the material to be used for the lower base. Find the dimensions of the box in terms of its fixed volume $V$ such that the cost of the used material is the minimum.
The final answer: $w=\frac{1}{2}\cdot\sqrt[3]{\frac{9\cdot V}{2}}$, $l=\sqrt[3]{\frac{9\cdot V}{2}}$, $y=\frac{2}{3}\cdot\sqrt[3]{\frac{4\cdot V}{3}}$
d4ce3600-3ef0-47d0-8550-0158a474ed33
differential_calc
true

Given $k(x) = \frac{ f(x) }{ g(x) }$, find $k'(-1)$ using the table below:
$k'(-1)$ = $1$
d4f54a6b-e604-4bf3-8782-acbc409ea7d2
algebra
false
null
Solve the quadratic equation by completing the square. Show each step. (Give your answer either exactly or rounded to two decimal places). $2 + z = 6 \cdot z^2$
$z$ = $\frac{2}{3}$, $-\frac{1}{2}$
d503c1fb-2754-4803-b9ac-6462fc93e8db
differential_calc
false
null
Find the derivative of the 27th order $y^{(27)}$ for a function $y = 2 \cdot x^2 \cdot \sin(x)$.
$y^{(27)}$ = $1404\cdot\cos(x)-2\cdot x^2\cdot\cos(x)-108\cdot x\cdot\sin(x)$
d541eb2d-198c-47dd-8811-79633c9e701e
integral_calc
false
null
Solve the integral: $$ \int \frac{ 1 }{ \sin(x)^5 } \, dx $$
The final answer: $C+\frac{1}{16}\cdot\left(2\cdot\left(\tan\left(\frac{x}{2}\right)\right)^2+6\cdot\ln\left(\left|\tan\left(\frac{x}{2}\right)\right|\right)+\frac{1}{4}\cdot\left(\tan\left(\frac{x}{2}\right)\right)^4-\frac{2}{\left(\tan\left(\frac{x}{2}\right)\right)^2}-\frac{1}{4\cdot\left(\tan\left(\frac{x}{2}\right)\right)^4}\right)$
d57c2f7d-971f-43c9-bb9e-25e15c923b21
multivariable_calculus
false
null
The solid $Q$ has the mass given by the triple integral: $$ \int_{0}^1 \left( \int_{0}^{\frac{ \pi }{ 2 }} \left( \int_{0}^{r^2} \left( r^4 + r \right) dz \right) d \theta \right) dr $$ 1. Find the density of the solid in rectangular coordinates. 2. Find the moment $M_{xy}$ about the xy-plane.
1. $\rho(x,y,z)$ = $1+\left(x^2+y^2\right)^{\frac{3}{2}}$ 2. $M_{xy}$ = $\frac{5\cdot\pi}{72}$
d5eda09b-3de0-441e-a722-ccb5244adbb9
integral_calc
false
null
Solve the integral: $$ \int \frac{ \sqrt{9 \cdot x+4} }{ -3 \cdot x^2 } \, dx $$
$\int \frac{ \sqrt{9 \cdot x+4} }{ -3 \cdot x^2 } \, dx$ = $C+\frac{\sqrt{9\cdot x+4}}{3\cdot x}-\frac{3}{4}\cdot\ln\left(\frac{\left|\sqrt{9\cdot x+4}-2\right|}{2+\sqrt{9\cdot x+4}}\right)$
d5fcba67-c072-4cb0-8f4d-9da61c993923
algebra
false
null
Evaluate the expression $\frac{ (2+i) \cdot (4-2 \cdot i) }{ (1+i) }$ and write the result as a simplified complex number.
$\frac{ (2+i) \cdot (4-2 \cdot i) }{ (1+i) }$ = $5-5\cdoti$
d602c133-9e68-402e-9b69-01ca11fa01fd
integral_calc
false
null
Compute the integral: $$ \int \frac{ 2 \cdot x+1 }{ (x-1) \cdot \sqrt{x^2-4 \cdot x+2} } \, dx $$
$\int \frac{ 2 \cdot x+1 }{ (x-1) \cdot \sqrt{x^2-4 \cdot x+2} } \, dx$ = $2\cdot\ln\left(\left|x-2+\sqrt{x^2-4\cdot x+2}\right|\right)-3\cdot\arcsin\left(\frac{x}{(x-1)\cdot\sqrt{2}}\right)+C$
d666f55d-1b0e-4b1c-821c-ddf1d1ea87df
integral_calc
false
null
Compute the integral: $$ \int \frac{ -1 }{ 3 \cdot \sin\left(\frac{ x }{ 3 }\right)^6 } \, dx $$
$\int \frac{ -1 }{ 3 \cdot \sin\left(\frac{ x }{ 3 }\right)^6 } \, dx$ = $\frac{\cos\left(\frac{x}{3}\right)}{5\cdot\sin\left(\frac{x}{3}\right)^5}-\frac{4}{15}\cdot\left(-\frac{\cos\left(\frac{x}{3}\right)}{\sin\left(\frac{x}{3}\right)^3}-2\cdot\cot\left(\frac{x}{3}\right)\right)+C$
d6cfc281-9a27-43ac-b0d7-17e6d64a8bf9
multivariable_calculus
false
null
Find the equation of a quadratic curve, which passes through the origin, and is tangent to $4 \cdot x + 3 \cdot y + 2 = 0$ at $(1,-2)$ and to $x - y - 1 = 0$ at $(0,-1)$.
The final answer: $6\cdot x^2-y^2+3\cdot x\cdot y+2\cdot x-y=0$
d6d00db5-5433-4e2e-be1f-07df6d0782c8
multivariable_calculus
false
null
Find the first derivative $y_{x}'$ of the function: $$ x = \arcsin\left(\frac{ t }{ \sqrt{2+2 \cdot t^2} }\right), \quad y = \arccos\left(\frac{ 1 }{ \sqrt{2+2 \cdot t^2} }\right), \quad t \ge 0 $$
$y_{x}'$ = $\frac{t\cdot\sqrt{t^2+2}}{\sqrt{2\cdot t^2+1}}$
d6d0e931-8b06-4a31-80b1-2abb2700d680
precalculus_review
false
null
1. Find the inverse function of $f(x) = (x-1)^2$, for $x \le 1$. 2. Find the domain of the inverse function. 3. Find the range of the inverse function.
1. The inverse function is: $1-\sqrt{x}$ 2. The domain of the inverse function is: $x\ge0$ 3. The range of the inverse function is: $y\le1$
d6e1f663-40a9-40f9-a0c7-53c225984de0
multivariable_calculus
false
null
Find the area of the region $R$ bounded by circles $x^2+y^2=1$ and $x^2+y^2=4$ and the lines $y=x$ and $y=\sqrt{3} \cdot x$.
The final answer: $\frac{\pi}{8}$
d6ec8d67-1fdb-4d5b-ba6c-40d38b33cabb
algebra
false
null
Solve the following equations: 1. $\frac{ 3 }{ 4 } (x+9) = 15$ 2. $\frac{ 2 }{ 3 } (m-8) = 4$ 3. $\frac{ 1 }{ 8 } (b+2) = \frac{ 3 }{ 8 }$ 4. $\frac{ 1 }{ 7 } (x-4) = -\frac{ 1 }{ 2 }$ 5. $\frac{ 2 }{ 5 } (-3-2 x) = \frac{ 18 }{ 5 }$ 6. $\frac{ 4 }{ 5 } (j+5) = \frac{ 2 }{ 5 }$
The solutions to the given equations are: 1. $x=11$ 2. $m=14$ 3. $b=1$ 4. $x=\frac{ 1 }{ 2 }$ 5. $x=-6$ 6. $j=\frac{ -9 }{ 2 }$
d6fcf747-13d5-42bb-99f4-1c6e55d5cdb5
multivariable_calculus
false
null
Consider a rectangular box of width $w$, length $l$, and height $h$ without a lid. If the box is to be made from $12$ sq. cm of cardboard, find the dimensions that maximize the volume of the box and the maximum possible volume itself.
Optimal dimensions: $w$: $2$ $l$: $2$ $h$: $1$ Maximum volume: $4$
d7685a03-c915-479a-bc22-d9a0106fca54
precalculus_review
false
null
State the domain and range of the function: $f(x) = \ln(x-5)$ 1. Domain 2. Range
1. Domain: $(5,\infty)$ 2. Range: $(-\infty,\infty)$
d78475ef-cb8a-41af-9269-a2327c4a2fff
differential_calc
false
null
Make full curve sketching of $y = \sqrt[3]{9 \cdot x^2 - x^3}$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation) $(-1\cdot\infty,\infty)$ 2. Vertical asymptotes None 3. Horizontal asymptotes None 4. Slant asymptotes $y=-x+3$ 5. Intervals where the function is increasing $(0,6)$ 6. Intervals where the function is decreasing $(-\infty,0)$, $(6,\infty)$ 7. Intervals where the function is concave up $(9,\infty)$ 8. Intervals where the function is concave down $(-\infty,0)$, $(0,9)$ 9. Points of inflection $P(9,0)$
d8e23310-2d6a-4413-9633-55f92b63775c
algebra
false
null
Recall the formula for calculating the magnitude of an earthquake, $M=\frac{ 2 }{ 3 } \cdot \log_{10}\left(\frac{ S }{ S_{0} }\right)$. One earthquake has magnitude $3.9$ on the MMS scale. If a second earthquake has $750$ times as much energy as the first, find the magnitude of the second quake. Round to the nearest hundredth.
Magnitude of the second quake: $5.82$
d906874a-47e3-404c-9e09-885002ec79f3
algebra
false
null
Find the solution to the following inequality and express it in interval notation: $$ 5 (x-7) (x+3) (x-2) < 0 $$
The solution set to the inequality is: $\left(-\infty,\ -3\right)\cup\left(2,\ 7\right)$
d920bf7f-8420-4c43-9f6a-e8ac4d3f2423
differential_calc
true

The functions $f$ and $g$ are differentiable functions. The graphs of $f'$ and $g'$, the derivatives of $f$ and $g$ respectively, are shown. Let $h(x) = \frac{ f(x) }{ 2 } - \frac{ 3 \cdot g(x) }{ 4 } + 2 \cdot x^2$. Find $h'(2)$. | | | --- |
$h'(2)$ = $10$
d930869f-c932-4aba-a4ea-e00bc94237a8
integral_calc
false
null
Compute the area of the figure bounded by curves $y = 8 \cdot x^2$, $y = 4 + 4 \cdot x^2$, lines $x = 3$, $x = -2$, and the $x$-axis.
Area = $\frac{184}{3}$
d982ac94-be51-47d3-a37f-8d59be82c81e
precalculus_review
false
null
Find points on a coordinate plane that satisfy the following equation: $$ 10 \cdot x^2 + 29 \cdot y^2 + 34 \cdot x \cdot y + 8 \cdot x + 14 \cdot y + 2 = 0 $$
The final answer: $(3,-2)$
d9a85aa2-237a-48ee-aa50-dadd42070cd8
sequences_series
false
null
Find the radius of convergence and sum of the series: $$ \frac{ 3 }{ 2 }+\frac{ 3 \cdot x }{ 1 \cdot 3 }+\frac{ 3 \cdot x^2 }{ 1 \cdot 2 \cdot 4 }+\cdots+\frac{ 3 \cdot x^n }{ \left(n!\right) \cdot (n+2) }+\cdots $$
1. Radius of convergence: $R=\infty$ 2. Sum: $f(x)=\begin{cases}\frac{3}{x^2}+\frac{3\cdot x\cdot e^x-3\cdot e^x}{x^2},&x\ne0\\\frac{3}{2},&x=0\end{cases}$
da100f17-a491-4014-8c00-0061a65cc2b4
precalculus_review
false
null
1. Find the inverse function of $f(x) = \frac{ 1 }{ x+2 }$ 2. Find the domain of the inverse function 3. Find the range of the inverse function
1. The inverse function is: $\frac{1}{x}-2$ 2. The domain of the inverse function is: $(-\infty,0)\cup(0,\infty)$ 3. The range of the inverse function is: $(-\infty,-2)\cup(-2,\infty)$
da29a7ac-6d10-4e13-9fc6-088951921221
multivariable_calculus
false
null
Evaluate $I=\int_{0}^4 \int_{0}^x \int_{0}^{x+y} \left(3 \cdot e^x \cdot (y+2 \cdot z)\right) dz dy dx$.
The final answer: $I=19\cdot\left(17\cdot e^4+3\right)$
da7e571f-2201-495c-a7df-955283c258ef
algebra
false
null
Divide rational expressions and simplify it: $$ \frac{ x^2-9 }{ 3 } \div \frac{ x-3 }{ 4 } $$
The final answer: $\frac{4}{3}\cdot x+4$
daa2fcb5-aa37-4baf-9417-863cc372bd78
differential_calc
false
null
For the curve $x = a \cdot \left(t - \sin(t)\right)$, $y = a \cdot \left(1 - \cos(t)\right)$, determine the curvature. Use $a = 12$.
The curvature is: $\frac{1}{48\cdot\left|\sin\left(\frac{t}{2}\right)\right|}$
dac50753-b5d3-4c11-a1c7-1575dde6e606
integral_calc
true

The following table lists the $2013$ schedule of federal income tax versus taxable income: Federal Income Tax Versus Taxable Income Suppose that Steve just received a $10,000 raise. How much of this raise is left after federal taxes if Steve's salary before receiving the raise was 1. $\$40,000$, 2. $\$90,000$, and 3. $\$385,000$?
1. If Steve's salary before receiving the raise is $\$40,000$, $$7500$$ is left. 2. If Steve's salary before receiving the raise is $\$90,000$, $$7200$$ is left. 3. If Steve's salary before receiving the raise is $\$385,000$, $$6700$$ is left.
dacc8400-999f-45b5-9169-bbc3631b4aeb
multivariable_calculus
false
null
Let $z = x^2 + 3 \cdot x \cdot y - y^2$. Find the exact change $\Delta z = f\left(x+\Delta x,y+\Delta y\right) - f(x,y)$ in the function and find the approximate change $d z$ in the function as $x$ changes from $2$ to $2.05$ and $y$ changes from $3$ to $2.96$.
The final answer: 1. The exact change $\Delta z$ is $0.6449$ 2. The approximate change $d z$ is $0.65$
db0e5db4-a7a3-45e3-abc6-9ae4b77fcf97
algebra
false
null
Add and subtract the rational expressions, and then simplify: $$ \frac{ x-4 }{ x+4 } - \frac{ 2 \cdot x+6 }{ 2 \cdot x+1 } $$
The final answer: $\frac{-21\cdot x-28}{2\cdot x^2+9\cdot x+4}$
db737faf-9359-40c5-9af9-bd828d9cb054
precalculus_review
false
null
Simplify the expression $\frac{ \cos(t) }{ \sin(t) }+\frac{ \sin(t) }{ 1+\cos(t) }$ by writing it in terms of sines and cosines, then simplify. The final answer does not have to be in terms of sine and cosine only.
$\frac{ \cos(t) }{ \sin(t) }+\frac{ \sin(t) }{ 1+\cos(t) }$ = $\csc(t)$
db73d0f5-3e61-4495-9063-c8cb58f9e4b3
multivariable_calculus
false
null
Evaluate $L=\lim_{(x,y) \to (3,3)}\left(\frac{ x^6-y^6 }{ x^2+x^2 \cdot y-x \cdot y^2-y^2 }\right)$
The final answer: $L=\frac{486}{5}$
db7ee4b1-97eb-441e-8ab6-9f71a248e8be
integral_calc
false
null
Compute the integral: $$ \int \frac{ 10 }{ \sin(4 \cdot x)^6 } \, dx $$
$\int \frac{ 10 }{ \sin(4 \cdot x)^6 } \, dx$ = $C-\frac{1}{2}\cdot\left(\cot(4\cdot x)\right)^5-\frac{5}{2}\cdot\cot(4\cdot x)-\frac{5}{3}\cdot\left(\cot(4\cdot x)\right)^3$
db996e6d-cc8a-4fb9-84e6-66007524a88c
precalculus_review
false
null
Find the zeros of the function $f(x) = \left(1 - \tan(x)\right) \cdot \left(1 + \sin(2 \cdot x)\right) - \tan(x) + \cos(2 \cdot x) - 1$.
The final answer: $x_1=-\frac{\pi}{4}+\pi\cdot n$, $x_2=\arctan\left(\frac{1}{2}\right)+\pi\cdot n$
dc06d10a-40f2-42cc-a038-53faf5f27d1c
sequences_series
false
null
Find the Fourier series of the periodic function $f(x) = x^2$ in the interval $-\pi \le x < \pi$ if $f(x) = f(x + 2 \cdot \pi)$.
The Fourier series is: $x^2=\frac{\pi^2}{3}-4\cdot\left(\frac{\cos(x)}{1^2}-\frac{\cos(2\cdot x)}{2^2}+\frac{\cos(3\cdot x)}{3^2}-\cdots\right)$
dc20dd10-80d5-4ed4-8e8b-1f706dc8ffb6
sequences_series
false
null
Evaluate the telescoping series or state whether the series diverges: $$ \sum_{n=1}^\infty \left(\sin(n)-\sin(n+1)\right) $$
$S_{k}$ -> None as $k$ -> $\infty$.
dc221026-1425-4caa-9b02-8ddde198eebe
multivariable_calculus
false
null
Express the region $D$ in polar coordinates. $D$ = $\left\{(x,y)|x^2+y^2 \le 4 \cdot x\right\}$ ($a \le \theta \le b$, $a \ge 0$, $b \ge 0$).
1. The interval for $r$ is $\left[0,4\cdot\cos\left(\theta\right)\right]$; 2. The interval for $\theta$ is $\left[\frac{3}{2}\cdot\pi,\frac{5\cdot\pi}{2}\right]$.
dc3838be-dabf-496c-90ab-3fe766bda473
differential_calc
true

The graph below is a function, $j$, whose domain is the set of all real numbers and is continuous everywhere. Determine the x-values for points of inflection.
There is a point of inflection at x-value(s): $x=-2.5$, $x=0$, $x=2.5$
dc71824f-02b4-4210-a32a-0d141c9fcf5c
precalculus_review
false
null
Simplify the expression $\frac{ 1+\tan\left(\alpha\right)^2 }{ 1+\cot\left(\alpha\right)^2 }$ by writing it in terms of sines and cosines, then simplify. The final answer does not have to be in terms of sine and cosine only.
$\frac{ 1+\tan\left(\alpha\right)^2 }{ 1+\cot\left(\alpha\right)^2 }$ = $\tan\left(\alpha\right)^2$
dcb60112-7be2-4d1a-b711-5f77dd0dc4bd
integral_calc
false
null
Find the integral: $$ \int \frac{ 1 }{ \sqrt[3]{\left(\sin(x)\right)^{11} \cdot \cos(x)} } \, dx $$
$\int \frac{ 1 }{ \sqrt[3]{\left(\sin(x)\right)^{11} \cdot \cos(x)} } \, dx$ = $-\frac{3\cdot\left(1+4\cdot\left(\tan(x)\right)^2\right)}{8\cdot\left(\tan(x)\right)^2\cdot\sqrt[3]{\left(\tan(x)\right)^2}}+C$
dce6ec64-2f61-4db6-9f12-8e5de1da1c22
multivariable_calculus
false
null
Find the tangential and normal components of acceleration for $\vec{r}(t) = \left\langle a \cdot \cos\left(\omega \cdot t\right), b \cdot \sin\left(\omega \cdot t\right) \right\rangle$ at $t=0$.
The final answer: 1. The tangential component of acceleration, $a_{t}$, is: $0$ 2. The normal component of acceleration, $a_{N}$, is: $\omega^2\cdot|a|$
dd266316-efe9-4f84-ba9d-09ebb753bc3c
integral_calc
false
null
Consider the Karun-$3$ dam in Iran. Its shape can be approximated as an isosceles triangle with height $205$ m and width $388$ m. Assume the current depth of the water is $180$ m. The density of water is $1000$ kg/$m^3$. Find the total force on the wall of the dam.
The total force : $18028940487.8049$
dd3412c0-c4c3-4b9f-8035-8467e18b9f5f
precalculus_review
false
null
Calculate $\cos\left(\frac{ \pi }{ 12 }\right)$.
The final answer: $\cos\left(\frac{\pi}{12}\right)=\frac{\sqrt{2}+\sqrt{6}}{4}$
de2bd512-089e-4d1e-b577-dd185962e7cf
differential_calc
false
null
Sketch the curve: $y = 3 \cdot x \cdot \sqrt{2-x^2}$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $\left[-1\cdot2^{2^{-1}},2^{2^{-1}}\right]$ 2. Vertical asymptotes: None 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $(-1,1)$ 6. Intervals where the function is decreasing: $\left(-2^{2^{-1}},-1\right)$, $\left(1,2^{2^{-1}}\right)$ 7. Intervals where the function is concave up: $\left(-2^{2^{-1}},0\right)$ 8. Intervals where the function is concave down: $\left(0,2^{2^{-1}}\right)$ 9. Points of inflection: $P(0,0)$
df12f49b-9f83-4e83-bf35-dcfb2c0375ce
sequences_series
false
null
Find the sum of the series $\sum_{n=1}^\infty \frac{ x^{4 \cdot n-3} }{ 4 \cdot n-3 }$. (Use differentiation of the series)
The sum of the series is $\frac{1}{4}\cdot\ln\left(\frac{|x+1|}{|x-1|}\right)+\frac{1}{2}\cdot\arctan(x)$
df82e2b4-2fde-4ea7-8256-2cefd78de08c
differential_calc
false
null
For the function $y = \sqrt[3]{2-x} + \frac{ 1 }{ 9 } \cdot x^2$ determine the intervals, where the function is concave up and concave down and points of inflection. Submit as your final answer: 1. Interval(s) where the function is concave up 2. Interval(s) where the function is concave down 3. Point(s) of inflection
1. Interval(s) where the function is concave up: $(-\infty,1)$, $(2,\infty)$ 2. Interval(s) where the function is concave down: $(1,2)$ 3. Point(s) of inflection: $P\left(1,\frac{10}{9}\right)$, $P\left(2,\frac{4}{9}\right)$
df9d5d54-0fe2-4815-8a98-f454e166f165
sequences_series
false
null
Determine the Taylor series for $f(x) = \frac{ 2 \cdot x - 1 }{ x^2 - 3 \cdot x + 2 }$, centered at $x_{0} = 4$. Write out the sum of the first four non-zero terms, followed by dots.
The final answer: $\frac{7}{6}+\left(\frac{1}{3^2}-\frac{3}{2^2}\right)\cdot(x-4)-\left(\frac{1}{3^3}-\frac{3}{2^3}\right)\cdot(x-4)^2+\left(\frac{1}{3^4}-\frac{3}{2^4}\right)\cdot(x-4)^3+\cdots$
dfce03fb-fa8b-46ea-94b9-343e9c0ada11
integral_calc
false
null
Compute the length of the arc $y = 2 \cdot \ln(3 \cdot x)$ between the points $x = \sqrt{5}$ and $x = 2 \cdot \sqrt{3}$.
Arc Length: $1+\ln\left(\frac{5}{3}\right)$
e01089ef-d282-4c55-b0cc-0fb6bc6d2bdf
precalculus_review
false
null
Solve $2 \cdot \left(\arcsin(x)\right)^2 - \arcsin(x) - 6 = 0$.
The final answer: $x=-\sin(1.5)$
e09be213-4d6a-4283-860d-c2f57bdaf5d4
algebra
false
null
Let $f(x) = \frac{ 1 }{ x }$. Find the number $b$ such that the average rate of change of $f$ on the interval $(2,b)$ is $-\frac{ 1 }{ 10 }$.
The final answer: $b=5$
e12228fb-4501-47ee-83fc-3c74da98cc45
multivariable_calculus
false
null
Use two circular permutations of the variables $x$, $y$, and $z$ to write new integral whose value equal the value of the original integral. A circular permutation of $x$, $y$, and $z$ is the arrangement of the numbers in one of the following orders: $y$, $z$, and $x$ or $z$, $x$, and $y$: $$ \int_{0}^1 \int_{1}^3 \int_{2}^4 \left(x^2 \cdot z^2 + 1\right) \, dx \, dy \, dz $$
1. $I$ with $d z \cdot d x \cdot d y$ is $\frac{148}{9}$ 2. $I$ with $d y \cdot d z \cdot d x$ is $\frac{148}{9}$
e1380c07-189c-47d2-92c7-e5456c086a22
algebra
false
null
Solve the following equations: 1. $-15c = -75$ 2. $-8 + r = 27$ 3. $19 + m = 3$ 4. $-\frac{w}{8} = 1$ 5. $p - 4.8 = 11.2$ 6. $\frac{g}{3.4} = 2.2$ 7. $3.6m = 25.2$ 8. $\frac{2}{5}t = \frac{8}{25}$ 9. $5\frac{5}{6} + m = 3\frac{5}{12}$
The solutions to the given equations are: 1. $c=5$ 2. $r=35$ 3. $m=-16$ 4. $w=-8$ 5. $p=16$ 6. $g=7.48$ 7. $m=7$ 8. $t=\frac{ 4 }{ 5 }$ 9. $m=-\frac{ 29 }{ 12 }$
e13c1022-2adc-4e50-a481-b6d868cea5be
multivariable_calculus
false
null
The volume of a right circular cylinder is given by $V(x,y) = \pi \cdot x^2 \cdot y$ where $x$ is the radius of the cylinder and $y$ is the cylinder height. Suppose $x$ and $y$ are functions of $t$ given by $x = \frac{ 1 }{ 2 } \cdot t$ and $y = \frac{ 1 }{ 3 } \cdot t$ so that $x$ and $y$ are both increasing with time. How fast is the volume increasing when $x=2$ and $y=5$?
The volume is increasing at a rate of $\frac{34\cdot\pi}{3}$
e159cbdd-10fe-4676-a0b0-6425fc80a525
differential_calc
false
null
For the function $y = \frac{ 2 \cdot x + 3 }{ 4 \cdot x + 5 }$ find the derivative $y^{(n)}$.
The General Form of the Derivative of $y = \frac{ 2 \cdot x + 3 }{ 4 \cdot x + 5 }$: $y^{(n)}=\frac{1}{2}\cdot(-1)^n\cdot\left(n!\right)\cdot4^n\cdot(4\cdot x+5)^{-(n+1)}$
e16f36eb-5794-4d0a-9b53-77b2e1730e59
differential_calc
false
null
Find the $x$-coordinate for each critical point of $f(x) = e^{-x} \cdot \sqrt{x}$
$x$ = $\frac{1}{2}$, $0$
e1c6ee2e-873b-4879-a3ef-f06229679527
sequences_series
false
null
Find the 3rd order Taylor polynomial $P_{3}(x)$ for the function $f(x) = \arctan(x)$ in powers of $x-1$ and give the Lagrange form of the remainder.
$P_{3}(x)$ = $\frac{ \pi }{ 4 }+\frac{ 1 }{ 2 } \cdot (x-1)-\frac{ 1 }{ 4 } \cdot (x-1)^2+\frac{ 1 }{ 12 } \cdot (x-1)^3$ $R_{3}(x)$ = $\frac{ -\frac{ 48 \cdot c^3 }{ \left(1+c^2\right)^4 }+\frac{ 24 \cdot c }{ \left(1+c^2\right)^3 } }{ 4! } \cdot (x-1)^4$
e1d09bc3-2f9a-4138-9ee0-fd559f60f732
differential_calc
false
null
Find $\frac{ d y }{d x}$ if $y = \frac{ 5 \cdot x^2 - 3 \cdot x }{ \left( 3 \cdot x^7 + 2 \cdot x^6 \right)^4 }$.
$\frac{ d y }{d x}$ = $\frac{-390\cdot x^2+23\cdot x+138}{x^{24}\cdot(3\cdot x+2)^5}$
e20ecd1f-1245-4ec5-959b-ea8ea17a5d1e
sequences_series
false
null
Find $\lim_{n \to \infty} \left(x_{n}\right)$, where $x_{n} = \left(\frac{ 2 \cdot n^3 }{ 2 \cdot n^2+3 }+\frac{ 1-5 \cdot n^2 }{ 5 \cdot n+1 }\right)$ is the general term of a sequence.
The final answer: $L=\frac{1}{5}$
e26ffc23-804d-4eaf-9729-1820407e0c76
multivariable_calculus
true

Find the average value of the function $f(x,y) = 3 \cdot x \cdot y$ on the region $D$:
The average value is $\frac{27}{20}$
e2afa39f-a784-407d-be4f-00e90b4ec92e
precalculus_review
false
null
Is the statement True or False? The following linear programming problem is infeasible. Maximize $f = 4 \cdot x_{1} - x_{2}$ subject to $x_{1} - x_{2} \le 3$ $-x_{1} + 3 \cdot x_{2} \le -5$ $x_{1} \ge 0$, $x_{2} \ge 0$
The final answer: $T\cdot r\cdot u\cdot e$
e2ec6409-4e11-40cc-a4a2-6c6b8f85fc24
precalculus_review
false
null
Solve the exponential equation exactly: $4^{x+1} - 32 = 0$
$x$ = $\frac{3}{2}$
e33483e5-a385-4ce3-91af-54df50ca062b
differential_calc
false
null
Sketch the curve: $$ y = 4 \cdot x^2 \cdot e^{\frac{ 1 }{ 2 \cdot x }} $$ Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptotes 3. Horizontal asymptotes 4. Slant asymptotes 5. Intervals where the function is increasing 6. Intervals where the function is decreasing 7. Intervals where the function is concave up 8. Intervals where the function is concave down 9. Points of inflection
1. The domain (in interval notation): $(-\infty,0)\cup(0,\infty)$ 2. Vertical asymptotes: $x=0$ 3. Horizontal asymptotes: None 4. Slant asymptotes: None 5. Intervals where the function is increasing: $\left(\frac{1}{4},\infty\right)$ 6. Intervals where the function is decreasing: $\left(0,\frac{1}{4}\right)$, $(-\infty,0)$ 7. Intervals where the function is concave up: $(-\infty,0)$, $(0,\infty)$ 8. Intervals where the function is concave down: None 9. Points of inflection: None
e39d239e-1f98-4224-8c4c-dc39999c7faf
differential_calc
false
null
Make full curve sketching of $f(x) = \frac{ 3 \cdot x^3 }{ 2 \cdot x^2 - 3 }$. Submit as your final answer: 1. The domain (in interval notation) 2. Vertical asymptote(s) 3. Horizontal asymptote(s) 4. Slant asymptote(s) 5. Interval(s) where the function is increasing 6. Interval(s) where the function is decreasing 7. Interval(s) where the function is concave up 8. Interval(s) where the function is concave down 9. Point(s) of inflection
1. The domain (in interval notation) $\left(-1\cdot\infty,-1\cdot3^{2^{-1}}\cdot2^{-1\cdot2^{-1}}\right)\cup\left(-1\cdot3^{2^{-1}}\cdot2^{-1\cdot2^{-1}},3^{2^{-1}}\cdot2^{-1\cdot2^{-1}}\right)\cup\left(3^{2^{-1}}\cdot2^{-1\cdot2^{-1}},\infty\right)$ 2. Vertical asymptote(s) $x=\frac{\sqrt{3}}{\sqrt{2}}$, $x=-\frac{\sqrt{3}}{\sqrt{2}}$ 3. Horizontal asymptote(s) None 4. Slant asymptote(s) $y=\frac{3}{2}\cdot x$ 5. Interval(s) where the function is increasing $\left(-\infty,-\frac{3}{\sqrt{2}}\right)$, $\left(\frac{3}{\sqrt{2}},\infty\right)$ 6. Interval(s) where the function is decreasing $\left(-\frac{3}{\sqrt{2}},-\frac{\sqrt{3}}{\sqrt{2}}\right)$, $\left(-\frac{\sqrt{3}}{\sqrt{2}},0\right)$, $\left(0,\frac{\sqrt{3}}{\sqrt{2}}\right)$, $\left(\frac{\sqrt{3}}{\sqrt{2}},\frac{3}{\sqrt{2}}\right)$ 7. Interval(s) where the function is concave up $\left(-\frac{\sqrt{3}}{\sqrt{2}},0\right)$, $\left(\frac{\sqrt{3}}{\sqrt{2}},\infty\right)$ 8. Interval(s) where the function is concave down $\left(-\infty,-\frac{\sqrt{3}}{\sqrt{2}}\right)$, $\left(0,\frac{\sqrt{3}}{\sqrt{2}}\right)$ 9. Point(s) of inflection $P(0,0)$
e3f282dc-5d88-47c9-a17b-5900c9e45805
integral_calc
false
null
Find the area of the surface formed by rotating the arc of the circle $x^2 + y^2 = 1$ between the points $(1,0)$ and $(0,1)$ in the first quadrant, around the line $x + y = 1$.
The final answer: $\frac{4\cdot\pi-\pi^2}{\sqrt{2}}$
e47cac1c-64b3-44fb-a64c-e30da6bea8bd
precalculus_review
false
null
Use the double-angle formulas to evaluate the integral: $$ \int \sin(x)^2 \, dx + \int \cos(x)^2 \, dx $$
$\int \sin(x)^2 \, dx + \int \cos(x)^2 \, dx$ = $x+C$
e4cbc0e5-b562-4a04-b2af-dab4fd6cba29
differential_calc
false
null
Calculate the derivative of the function $r = 9 \cdot \ln\left(\sqrt[3]{\frac{ 1+\tan\left(\frac{ \varphi }{ 3 }\right) }{ 1-\tan\left(\frac{ \varphi }{ 3 }\right) }}\right)$.
$r'$ = $2\cdot\sec\left(\frac{2\cdot\varphi}{3}\right)$
e4e2cd9f-3550-4c70-ae5f-41f38df496e0
sequences_series
false
null
Find the radius of convergence and sum of the series: $$ \frac{ 1 }{ 3 }+\frac{ x }{ 1 \cdot 4 }+\frac{ x^2 }{ 1 \cdot 2 \cdot 5 }+\cdots+\frac{ x^n }{ \left(n!\right) \cdot (n+3) }+\cdots $$
1. Radius of convergence: $R=\infty$ 2. Sum: $f(x)=\begin{cases}\frac{x\cdot\left(2\cdot e^x-2\cdot x\cdot e^x\right)+e^x\cdot x^3}{x^4}-\frac{2}{x^3},&x\ne0\\\frac{1}{3},&x=0\end{cases}$
e50e9658-dc0f-4685-8298-ba3fdc11e9f0
integral_calc
false
null
Compute the integral: $$ \int \frac{ 1 }{ \sin(x)^6 } \, dx $$
$\int \frac{ 1 }{ \sin(x)^6 } \, dx$ = $-\frac{\cos(x)}{5\cdot\sin(x)^5}+\frac{4}{5}\cdot\left(-\frac{\cos(x)}{3\cdot\sin(x)^3}-\frac{2}{3}\cdot\cot(x)\right)$
e5720838-c669-4dd3-a936-ff2b5c33436f
sequences_series
false
null
Consider the power series $\sum_{k=1}^\infty \frac{ (2 \cdot x+1)^k }{ 2^k \cdot \sqrt{k} }$. 1. Find the center of convergence of the series. 2. Find the radius of convergence of the series.
1. The center of convergence is $a=-\frac{1}{2}$ 2. The radius of convergence is $R=1$
e580db01-e32b-49d4-810e-5a37e87204b8
sequences_series
false
null
Express the series $\sum_{k=0}^\infty\left(x^k-x^{2 \cdot k+1}\right)$ in terms of elementary functions and find the radius of convergence of the sum.
1. $\sum_{k=0}^\infty\left(x^k-x^{2 \cdot k+1}\right)$ = $\frac{1}{1-x^2}$ 2. radius of convergence $R$ = $1$
e589347b-40ae-472d-bd48-78cbed301827
multivariable_calculus
false
null
Determine a definite integral that represents the area enclosed by the inner loop of $r = 3 - 4 \cdot \cos(\theta)$.
The final answer: $\int_0^{\arccos\left(\frac{3}{4}\right)}\left(3-4\cdot\cos\left(\theta\right)\right)^2d\theta$
e613669c-e828-4933-8ad1-68615e2e0b67
multivariable_calculus
false
null
The position of a particle at time $t$ is given by $\vec{r}(t) = \left\langle \frac{ t^2 }{ 2 },\frac{ 2 \cdot \sqrt{2} }{ 3 } \cdot t^{\frac{ 3 }{ 2 }},t \right\rangle$. 1. Find the velocity vector of the particle. 2. Find the acceleration vector of the particle. 3. Find the distance traveled by the particle between the points $P(0,0,0)$ and $P\left(\frac{ 1 }{ 2 },\frac{ 2 \cdot \sqrt{2} }{ 3 },1\right)$.
1. $\left\langlet,\sqrt{2}\cdot\sqrt{t},1\right\rangle$ 2. $\left\langle1,\frac{1}{\sqrt{2}\cdot\sqrt{t}},0\right\rangle$ 3. $\frac{3}{2}$
e694511e-0873-4b17-82a8-6e13ecc589c1
sequences_series
false
null
Expand the function $y = \ln\left(x + \sqrt{1 + x^2}\right)$ in a power series.
The final answer: $x-\frac{1}{2}\cdot\frac{x^3}{3}+\frac{1\cdot3}{4\cdot2}\cdot\frac{x^5}{5}-\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\cdot\frac{x^7}{7}+\cdots+\frac{(2\cdot n-1)!!}{(2\cdot n)!!}\cdot\frac{x^{2\cdot n+1}}{2\cdot n+1}+\cdots$
e6a45a85-fdbb-4381-9f51-63e7d1c32fcd
sequences_series
false
null
Compute $\sqrt[4]{80}$ with accuracy $0.0001$.
The final answer: $2.9907$
e78bdde6-d3e2-47e8-81e3-b17177ba3818
precalculus_review
false
null
Use properties of the natural logarithm to write the expression $\ln\left(x^4 \cdot y\right)$ as an expression of $\ln(x)$ and $\ln(y)$.
$\ln\left(x^4 \cdot y\right)$ = $4\cdot\ln(x)+\ln(y)$
e7c924e6-d60f-43b4-b2ef-d83524eb6886
integral_calc
false
null
Find the moment of inertia of the figure bounded by the arc of the semicircle $x^2 + y^2 = 9$, $y > 0$ relative to the x-axis.
The moment of inertia is: $\frac{243}{8}\cdot\pi$
e7e29834-4747-4aee-a690-1635add2dd35
multivariable_calculus
false
null
Find the maximum volume of the parallelepiped inscribed in the half-sphere of radius $R$.
$V$ = $\frac{4}{3\cdot\sqrt{3}}\cdot R^3$
e8395a31-7b69-4c48-a257-c31ad220222f
algebra
false
null
Determine all rational values of $x$ at which $y = \sqrt{x^2 + x + 3}$ is a rational number.
The final answer: $x=\frac{q^2-3}{(1-2\cdot q)}$
e83a5d89-d36a-426f-96ca-3f62759e1d1a
integral_calc
true

A large fish tank owner notices that the filter on his tank loses effectiveness over time. He measures the rate the pollutants increase in the water every day until he changes the filter. Using the right rectangular approximation method (RRAM) with $n=3$, and the data below, what is the total amount of pollutants the water has over the course of a week?
Total amount of pollutants: $200$
e88de257-9aa0-4277-b404-bce62070bf07
differential_calc
false
null
Find the second derivative $\frac{d ^2y}{ d x^2}$ of the function $x = \left(4 \cdot \sin(t)\right)^3$, $y = 2 \cdot \sin(2 \cdot t)$.
$\frac{d ^2y}{ d x^2}$ = $\frac{\left(2304\cdot\left(\sin(t)\right)^3-1536\cdot\sin(t)\right)\cdot\cos(2\cdot t)-1536\cdot\left(\sin(t)\right)^2\cdot\cos(t)\cdot\sin(2\cdot t)}{7077888\cdot\left(\cos(t)\right)^3\cdot\left(\sin(t)\right)^6}$
e8e1d2cd-2424-4468-aaad-ab1de689cf41
multivariable_calculus
false
null
Evaluate the area of the figure bounded by $\rho = a \cdot \cos(2 \cdot \varphi)$.
The area is $\frac{\pi}{2}\cdot a^2$
e96b0661-863a-46a1-9573-432fb705ee4b
algebra
false
null
1. On a map, the scale is 1.5 inches : 20 miles. If two cities are 115 miles apart, how far apart are they on the map? 2. A model of a dinosaur built to a scale of 3 cm : 1 m is 24 centimeters tall. How tall was the actual dinosaur? 3. What are the dimensions of a building whose dimensions on a blueprint are 1.8 cm by 2.4 cm? The blueprint’s scale is 1 cm : 15 feet. 4. The distance between two cities is 180 miles. How far does that measure on a map with a scale of 1 inch : 25 miles?
1. $8.625$ inches 2. $8$ m 3. $27$ feet by $36$ feet 4. $7.2$ inches
e9c1a928-3748-44fc-8791-eaf192d07f88
multivariable_calculus
false
null
Compute the area of the region bounded by the graph of $\left(x^2+y^2\right)^2=2 \cdot y^3$. (Hint: use the polar coordinates).
$S$ = $\frac{5}{4}\cdot\pi$
ea099411-f1fd-44e5-b9db-54271bc9afd6
algebra
false
null
Find an exponential function that passes through the points: | $x$ | $1$ | $2$ | $3$ | $4$ | | --- | --- | --- | --- | --- | | $f(x)$ | $10$ | $20$ | $40$ | $80$ |
$f(x)$ = $5\cdot2^x$
ea191942-29a9-43a1-ba80-9d4753b80368
multivariable_calculus
true

Evaluate the triple integral of the function $f(x,y,z) = 1 - \sqrt{x^2+y^2+z^2}$ over the solid $B$ bounded by $x^2+y^2+z^2 \le 9$, $z \ge 0$, and $y \ge 0$.
$\int\int\int_{B}{f(x,y,z) dV}$ = $-\frac{45\cdot\pi}{4}$
ea1fe8c2-0c26-4940-8333-08a978425882
differential_calc
false
null
Find the local extrema of the function $f(x) = 3 \cdot \left(x^2\right)^{\frac{ 1 }{ 3 }} - 4 \cdot x^2$ using the First Derivative Test.
Local maxima: $x=-\frac{1}{2\cdot\sqrt[4]{4}}$, $x=\frac{1}{2\cdot\sqrt[4]{4}}$ Local minima: $x=0$
ea4c115a-3f35-4c2e-bdb8-5b92cb2e7e31
precalculus_review
false
null
Solve the exponential equation exactly: $3^{\frac{ x }{ 14 }} = \frac{ 1 }{ 10 }$
$x$ = $-\frac{14}{\log_{10}(3)}$