metadata
language: en
license: mit
base_model: answerdotai/ModernBERT-base
tags:
- token-classification
- ModernBERT-base
datasets:
- disham993/ElectricalNER
metrics:
- epoch: 1
- eval_precision: 0.8935291782453354
- eval_recall: 0.9075806451612904
- eval_f1: 0.9005001000200039
- eval_accuracy: 0.9586046624222324
- eval_runtime: 2.509
- eval_samples_per_second: 601.44
- eval_steps_per_second: 9.566
disham993/electrical-ner-modernbert-base
Model description
This model is fine-tuned from answerdotai/ModernBERT-base for token-classification tasks.
Training Data
The model was trained on the disham993/ElectricalNER dataset.
Model Details
- Base Model: answerdotai/ModernBERT-base
- Task: token-classification
- Language: en
- Dataset: disham993/ElectricalNER
Training procedure
Training hyperparameters
[Please add your training hyperparameters here]
Evaluation results
Metrics\n- epoch: 1.0\n- eval_precision: 0.8935291782453354\n- eval_recall: 0.9075806451612904\n- eval_f1: 0.9005001000200039\n- eval_accuracy: 0.9586046624222324\n- eval_runtime: 2.509\n- eval_samples_per_second: 601.44\n- eval_steps_per_second: 9.566
Usage
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-modernbert-base")
model = AutoModel.from_pretrained("disham993/electrical-ner-modernbert-base")
Limitations and bias
[Add any known limitations or biases of the model]
Training Infrastructure
[Add details about training infrastructure used]
Last update
2024-12-30