|
--- |
|
language: en |
|
license: mit |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- token-classification |
|
- ModernBERT-base |
|
datasets: |
|
- disham993/ElectricalNER |
|
metrics: |
|
- epoch: 1.0 |
|
- eval_precision: 0.8935291782453354 |
|
- eval_recall: 0.9075806451612904 |
|
- eval_f1: 0.9005001000200039 |
|
- eval_accuracy: 0.9586046624222324 |
|
- eval_runtime: 2.509 |
|
- eval_samples_per_second: 601.44 |
|
- eval_steps_per_second: 9.566 |
|
--- |
|
|
|
# disham993/electrical-ner-modernbert-base |
|
|
|
## Model description |
|
|
|
This model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) for token-classification tasks. |
|
|
|
## Training Data |
|
|
|
The model was trained on the disham993/ElectricalNER dataset. |
|
|
|
## Model Details |
|
- **Base Model:** answerdotai/ModernBERT-base |
|
- **Task:** token-classification |
|
- **Language:** en |
|
- **Dataset:** disham993/ElectricalNER |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
[Please add your training hyperparameters here] |
|
|
|
## Evaluation results |
|
|
|
### Metrics\n- epoch: 1.0\n- eval_precision: 0.8935291782453354\n- eval_recall: 0.9075806451612904\n- eval_f1: 0.9005001000200039\n- eval_accuracy: 0.9586046624222324\n- eval_runtime: 2.509\n- eval_samples_per_second: 601.44\n- eval_steps_per_second: 9.566 |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-modernbert-base") |
|
model = AutoModel.from_pretrained("disham993/electrical-ner-modernbert-base") |
|
``` |
|
|
|
## Limitations and bias |
|
|
|
[Add any known limitations or biases of the model] |
|
|
|
## Training Infrastructure |
|
|
|
[Add details about training infrastructure used] |
|
|
|
## Last update |
|
|
|
2024-12-30 |
|
|