|
--- |
|
base_model: google-bert/bert-base-uncased |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:103663 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: How much native Icelandic and advanced Icelandic learners can read |
|
and understand Old Norse? |
|
sentences: |
|
- What are the best answers for "Why should I hire you?"in a cool way? |
|
- Are girls shy in expressing their feelings? |
|
- If I learn Icelandic can I understand old norse texts? |
|
- source_sentence: Where can I get quality assistance for budget conveyancing across |
|
the Sydney? |
|
sentences: |
|
- What are the possible options for India to deal with Uri terror attack? |
|
- What is the intended purpose of philosophy? |
|
- Where can I get quality assistance in Sydney for any property transaction? |
|
- source_sentence: What are some of the best IAS coaching institutions in Mumbai? |
|
sentences: |
|
- What are best IAS coaching institutes in Mumbai? |
|
- Do vampires really exist? |
|
- What do most women feel during sex? |
|
- source_sentence: Is petroleum engineering still a good major? |
|
sentences: |
|
- What are some of the best sex stories? |
|
- Can I clear CAT in 4.5 months? |
|
- What is the future of petroleum engineering graduating in 2020? |
|
- source_sentence: How can the drive from Edmonton to Auckland be described, and how |
|
do these cities' attractions compare to those in Vancouver? |
|
sentences: |
|
- How can the drive from Edmonton to Auckland be described, and how does the history |
|
of these cities compare and contrast to the history of Vancouver? |
|
- What are the best hashtags to use as a photographer on instagram? |
|
- Which optional subjects can I choose for the IAS exam? |
|
model-index: |
|
- name: SentenceTransformer based on google-bert/bert-base-uncased |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.7643828947012523 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.8147265911102295 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.6959193470955354 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7402496337890625 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.5945532101060921 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.838953622964735 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.7112611713824615 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.7399583457304374 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 153.5009765625 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.6710917251406536 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 133.23265075683594 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.5683387761657477 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.8191990122694652 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.6542447011722929 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.7665197046333613 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 176.4288787841797 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.6972882533068157 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 218.96762084960938 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.590020301314243 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.8522262520256193 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.7109056366977289 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.7665197046333613 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 8.092199325561523 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.6970045347129081 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 9.794208526611328 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.5945518932171071 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.8421174473338993 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.7109417385930392 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.7665197046333613 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 176.4288787841797 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.6972882533068157 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 218.96762084960938 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.5945532101060921 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.8522262520256193 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.7112611713824615 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("gavinqiangli/my-awesome-bi-encoder") |
|
# Run inference |
|
sentences = [ |
|
"How can the drive from Edmonton to Auckland be described, and how do these cities' attractions compare to those in Vancouver?", |
|
'How can the drive from Edmonton to Auckland be described, and how does the history of these cities compare and contrast to the history of Vancouver?', |
|
'Which optional subjects can I choose for the IAS exam?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.7644 | |
|
| cosine_accuracy_threshold | 0.8147 | |
|
| cosine_f1 | 0.6959 | |
|
| cosine_f1_threshold | 0.7402 | |
|
| cosine_precision | 0.5946 | |
|
| cosine_recall | 0.839 | |
|
| cosine_ap | 0.7113 | |
|
| dot_accuracy | 0.74 | |
|
| dot_accuracy_threshold | 153.501 | |
|
| dot_f1 | 0.6711 | |
|
| dot_f1_threshold | 133.2327 | |
|
| dot_precision | 0.5683 | |
|
| dot_recall | 0.8192 | |
|
| dot_ap | 0.6542 | |
|
| manhattan_accuracy | 0.7665 | |
|
| manhattan_accuracy_threshold | 176.4289 | |
|
| manhattan_f1 | 0.6973 | |
|
| manhattan_f1_threshold | 218.9676 | |
|
| manhattan_precision | 0.59 | |
|
| manhattan_recall | 0.8522 | |
|
| manhattan_ap | 0.7109 | |
|
| euclidean_accuracy | 0.7665 | |
|
| euclidean_accuracy_threshold | 8.0922 | |
|
| euclidean_f1 | 0.697 | |
|
| euclidean_f1_threshold | 9.7942 | |
|
| euclidean_precision | 0.5946 | |
|
| euclidean_recall | 0.8421 | |
|
| euclidean_ap | 0.7109 | |
|
| max_accuracy | 0.7665 | |
|
| max_accuracy_threshold | 176.4289 | |
|
| max_f1 | 0.6973 | |
|
| max_f1_threshold | 218.9676 | |
|
| max_precision | 0.5946 | |
|
| max_recall | 0.8522 | |
|
| **max_ap** | **0.7113** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 103,663 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 13.82 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.87 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>0: ~4.80%</li><li>1: ~95.20%</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:-------------------------------------------------------------------------------------|:---------------------------------------------------------|:---------------| |
|
| <code>Are Jewish people the most intelligent in the universe?</code> | <code>Why are Jewish people so intelligent?</code> | <code>1</code> | |
|
| <code>How do I become a good lawyer? What are the qualities of a good lawyer?</code> | <code>How can someone become a successful lawyer?</code> | <code>1</code> | |
|
| <code>Why is China going to the Moon?</code> | <code>What does China want with the moon?</code> | <code>1</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | max_ap | |
|
|:------:|:----:|:-------------:|:------:| |
|
| 0.0772 | 500 | 0.0796 | - | |
|
| 0.1543 | 1000 | 0.0205 | 0.6878 | |
|
| 0.2315 | 1500 | 0.0197 | - | |
|
| 0.3087 | 2000 | 0.0201 | 0.6864 | |
|
| 0.3859 | 2500 | 0.0185 | - | |
|
| 0.4630 | 3000 | 0.0161 | 0.6933 | |
|
| 0.5402 | 3500 | 0.0163 | - | |
|
| 0.6174 | 4000 | 0.0172 | 0.7089 | |
|
| 0.6946 | 4500 | 0.0172 | - | |
|
| 0.7717 | 5000 | 0.0143 | 0.7072 | |
|
| 0.8489 | 5500 | 0.0129 | - | |
|
| 0.9261 | 6000 | 0.0124 | 0.7112 | |
|
| 1.0 | 6479 | - | 0.7113 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.2.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.5.0+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |