|
--- |
|
language: |
|
- en |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:4517388 |
|
- loss:ContrastiveLoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
widget: |
|
- source_sentence: 640 prt ashley floor 10 chula vista california 91913 |
|
sentences: |
|
- 10523 howard parks apartment 8 cockseysville md 21030 |
|
- 640 prt ashley floor 10 East Gregory PW 91913 |
|
- trailwoods radial loveland oh 4514 |
|
- source_sentence: 9036 taylorsville road louisville ky 40299-1750 |
|
sentences: |
|
- '16331 northwest gearin junctn floor num 6 apt # 4 f tigard or 97223-2808' |
|
- 19 Brian Key walk voorhees township n. j. 08026 |
|
- 9036 taylorsville boulevard louisville 40299-175 |
|
- source_sentence: 11 simek ln middletown township n j 07758 |
|
sentences: |
|
- 248 strawberry meadows place apt 1 springdale 72764-3759 |
|
- 11 Daniel Drive knl middletown township MT 41761 |
|
- 1135 s westgate ave Mileshaven ca 90049 |
|
- source_sentence: so west prospect street aloha or 97078 |
|
sentences: |
|
- '1300 Brittney Club plains lot # b new york cty NY 10459' |
|
- 527 Nicole Springs bypas rupert CA 05776 |
|
- so wdest prospect street aloha 97078 |
|
- source_sentence: 8234 harvest bend lane laurel md 20707 |
|
sentences: |
|
- 8234 harvest bend lane laurel md |
|
- 8702 wahl crse basement santee ca 92071 |
|
- 310 ella street Jamesborough ne 68310 |
|
datasets: |
|
- jarredparrett/deepparse_address_mutations_comb_3 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: jarredparrett/deepparse address mutations comb 3 |
|
type: jarredparrett/deepparse_address_mutations_comb_3 |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9770643339132159 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.7712496519088745 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.9784053285401372 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7712496519088745 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.960100255219399 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.9974219699718995 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.9864940067102314 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.9770643339132159 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 0.7712496519088745 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.9784053285401372 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 0.7712496519088745 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.960100255219399 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.9974219699718995 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.986499063941509 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.9770395408321384 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 10.601512908935547 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.978383036334317 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 10.611783027648926 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.9600334406666756 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.9974477502721805 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.9865423177462433 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.9770643339132159 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 0.6763879060745239 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.9784053285401372 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 0.6763879060745239 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.960100255219399 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.9974219699718995 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.9865515796011742 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.9770643339132159 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 10.601512908935547 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.9784053285401372 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 10.611783027648926 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.960100255219399 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.9974477502721805 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.9865515796011742 |
|
name: Max Ap |
|
- type: cosine_accuracy |
|
value: 0.9770612347780813 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.7710819244384766 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.9783854448042815 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7710819244384766 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.9600473761629129 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.9974377142267394 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.9865423807819248 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.9770612347780813 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 0.7710819244384766 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.9783854448042815 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 0.7710819244384766 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.9600473761629129 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.9974377142267394 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.9865613743522202 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.9770395408321384 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 10.510114669799805 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.9783637843035726 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 10.637184143066406 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.9599119169895931 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.9975389354307954 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.9865931109650937 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.9770612347780813 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 0.6766358613967896 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.9783854448042815 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 0.6766358613967896 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.9600473761629129 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.9974377142267394 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.9866061739963429 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.9770612347780813 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 10.510114669799805 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.9783854448042815 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 10.637184143066406 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.9600473761629129 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.9975389354307954 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.9866061739963429 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3") |
|
# Run inference |
|
sentences = [ |
|
'8234 harvest bend lane laurel md 20707', |
|
'8234 harvest bend lane laurel md', |
|
'8702 wahl crse basement santee ca 92071', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
* Dataset: `jarredparrett/deepparse_address_mutations_comb_3` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.9771 | |
|
| cosine_accuracy_threshold | 0.7712 | |
|
| cosine_f1 | 0.9784 | |
|
| cosine_f1_threshold | 0.7712 | |
|
| cosine_precision | 0.9601 | |
|
| cosine_recall | 0.9974 | |
|
| cosine_ap | 0.9865 | |
|
| dot_accuracy | 0.9771 | |
|
| dot_accuracy_threshold | 0.7712 | |
|
| dot_f1 | 0.9784 | |
|
| dot_f1_threshold | 0.7712 | |
|
| dot_precision | 0.9601 | |
|
| dot_recall | 0.9974 | |
|
| dot_ap | 0.9865 | |
|
| manhattan_accuracy | 0.977 | |
|
| manhattan_accuracy_threshold | 10.6015 | |
|
| manhattan_f1 | 0.9784 | |
|
| manhattan_f1_threshold | 10.6118 | |
|
| manhattan_precision | 0.96 | |
|
| manhattan_recall | 0.9974 | |
|
| manhattan_ap | 0.9865 | |
|
| euclidean_accuracy | 0.9771 | |
|
| euclidean_accuracy_threshold | 0.6764 | |
|
| euclidean_f1 | 0.9784 | |
|
| euclidean_f1_threshold | 0.6764 | |
|
| euclidean_precision | 0.9601 | |
|
| euclidean_recall | 0.9974 | |
|
| euclidean_ap | 0.9866 | |
|
| max_accuracy | 0.9771 | |
|
| max_accuracy_threshold | 10.6015 | |
|
| max_f1 | 0.9784 | |
|
| max_f1_threshold | 10.6118 | |
|
| max_precision | 0.9601 | |
|
| max_recall | 0.9974 | |
|
| **max_ap** | **0.9866** | |
|
|
|
#### Binary Classification |
|
* Dataset: `jarredparrett/deepparse_address_mutations_comb_3` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.9771 | |
|
| cosine_accuracy_threshold | 0.7711 | |
|
| cosine_f1 | 0.9784 | |
|
| cosine_f1_threshold | 0.7711 | |
|
| cosine_precision | 0.96 | |
|
| cosine_recall | 0.9974 | |
|
| cosine_ap | 0.9865 | |
|
| dot_accuracy | 0.9771 | |
|
| dot_accuracy_threshold | 0.7711 | |
|
| dot_f1 | 0.9784 | |
|
| dot_f1_threshold | 0.7711 | |
|
| dot_precision | 0.96 | |
|
| dot_recall | 0.9974 | |
|
| dot_ap | 0.9866 | |
|
| manhattan_accuracy | 0.977 | |
|
| manhattan_accuracy_threshold | 10.5101 | |
|
| manhattan_f1 | 0.9784 | |
|
| manhattan_f1_threshold | 10.6372 | |
|
| manhattan_precision | 0.9599 | |
|
| manhattan_recall | 0.9975 | |
|
| manhattan_ap | 0.9866 | |
|
| euclidean_accuracy | 0.9771 | |
|
| euclidean_accuracy_threshold | 0.6766 | |
|
| euclidean_f1 | 0.9784 | |
|
| euclidean_f1_threshold | 0.6766 | |
|
| euclidean_precision | 0.96 | |
|
| euclidean_recall | 0.9974 | |
|
| euclidean_ap | 0.9866 | |
|
| max_accuracy | 0.9771 | |
|
| max_accuracy_threshold | 10.5101 | |
|
| max_f1 | 0.9784 | |
|
| max_f1_threshold | 10.6372 | |
|
| max_precision | 0.96 | |
|
| max_recall | 0.9975 | |
|
| **max_ap** | **0.9866** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### deepparse_address_mutations_comb_3 |
|
|
|
* Dataset: [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) at [7162fdc](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3/tree/7162fdce4cfcb8114dc8f64d0631dc7a48c5ab7a) |
|
* Size: 4,517,388 training samples |
|
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | label | sentence1 | sentence2 | |
|
|:--------|:-------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | torch.Tensor | string | string | |
|
| details | <ul><li></li></ul> | <ul><li>min: 8 tokens</li><li>mean: 13.21 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.54 tokens</li><li>max: 22 tokens</li></ul> | |
|
* Samples: |
|
| label | sentence1 | sentence2 | |
|
|:----------------------------------------|:-----------------------------------------------------------|:-----------------------------------------------------------| |
|
| <code>tensor(1, device='cuda:0')</code> | <code>12737 chesdin landng dr chesterfield va 23838</code> | <code>12737 chesdin landng dr chesterfield va</code> | |
|
| <code>tensor(1, device='cuda:0')</code> | <code>6080 norh oak trafficway gladstone mo 64118</code> | <code>6080 norh oak trafficway gladstone 64118-4896</code> | |
|
| <code>tensor(0, device='cuda:0')</code> | <code>242 pierce view cir wentzville mo 63385</code> | <code>242 pierce view cir wentzville LA 63385</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### deepparse_address_mutations_comb_3 |
|
|
|
* Dataset: [deepparse_address_mutations_comb_3](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3) at [7162fdc](https://huggingface.co/datasets/jarredparrett/deepparse_address_mutations_comb_3/tree/7162fdce4cfcb8114dc8f64d0631dc7a48c5ab7a) |
|
* Size: 968,012 evaluation samples |
|
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | label | sentence1 | sentence2 | |
|
|:--------|:-------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | torch.Tensor | string | string | |
|
| details | <ul><li></li></ul> | <ul><li>min: 8 tokens</li><li>mean: 13.24 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 13.45 tokens</li><li>max: 27 tokens</li></ul> | |
|
* Samples: |
|
| label | sentence1 | sentence2 | |
|
|:----------------------------------------|:------------------------------------------------------|:--------------------------------------------------------| |
|
| <code>tensor(1, device='cuda:0')</code> | <code>1 vincent avenue essex maryland 21221</code> | <code>1 vincent avenue essedx MD 21221</code> | |
|
| <code>tensor(1, device='cuda:0')</code> | <code>139 berg avenue hamilton tshp n.j. 08610</code> | <code>139 bcrg avenue hamilton tshp n.j. 08610</code> | |
|
| <code>tensor(1, device='cuda:0')</code> | <code>714 havard rd houston texas 77336</code> | <code>714 havaplns plns houston texas 77336-3120</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 1024 |
|
- `per_device_eval_batch_size`: 1024 |
|
- `learning_rate`: 2e-05 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 1024 |
|
- `per_device_eval_batch_size`: 1024 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | jarredparrett/deepparse_address_mutations_comb_3_max_ap | |
|
|:------:|:-----:|:-------------:|:------:|:-------------------------------------------------------:| |
|
| 0.1133 | 500 | 0.0191 | 0.0131 | 0.8459 | |
|
| 0.2267 | 1000 | 0.0112 | 0.0091 | 0.8887 | |
|
| 0.3400 | 1500 | 0.0086 | 0.0067 | 0.9346 | |
|
| 0.4533 | 2000 | 0.0064 | 0.0044 | 0.9604 | |
|
| 0.5666 | 2500 | 0.0049 | 0.0037 | 0.9722 | |
|
| 0.6800 | 3000 | 0.0042 | 0.0033 | 0.9761 | |
|
| 0.7933 | 3500 | 0.0039 | 0.0032 | 0.9808 | |
|
| 0.9066 | 4000 | 0.0037 | 0.0029 | 0.9825 | |
|
| 1.0197 | 4500 | 0.0035 | 0.0028 | 0.9826 | |
|
| 1.1330 | 5000 | 0.0033 | 0.0028 | 0.9836 | |
|
| 1.2464 | 5500 | 0.0032 | 0.0027 | 0.9845 | |
|
| 1.3597 | 6000 | 0.0031 | 0.0026 | 0.9853 | |
|
| 1.4730 | 6500 | 0.003 | 0.0025 | 0.9857 | |
|
| 1.5864 | 7000 | 0.003 | 0.0025 | 0.9859 | |
|
| 1.6997 | 7500 | 0.0029 | 0.0025 | 0.9862 | |
|
| 1.8130 | 8000 | 0.0028 | 0.0024 | 0.9864 | |
|
| 1.9263 | 8500 | 0.0028 | 0.0024 | 0.9861 | |
|
| 2.0394 | 9000 | 0.0028 | 0.0024 | 0.9864 | |
|
| 2.1528 | 9500 | 0.0027 | 0.0024 | 0.9864 | |
|
| 2.2661 | 10000 | 0.0027 | 0.0024 | 0.9865 | |
|
| 2.3794 | 10500 | 0.0027 | 0.0023 | 0.9866 | |
|
| 2.4927 | 11000 | 0.0026 | 0.0023 | 0.9866 | |
|
| 2.6061 | 11500 | 0.0026 | 0.0023 | 0.9865 | |
|
| 2.7194 | 12000 | 0.0026 | 0.0023 | 0.9865 | |
|
| 2.8327 | 12500 | 0.0026 | 0.0023 | 0.9865 | |
|
| 2.9461 | 13000 | 0.0026 | 0.0023 | 0.9866 | |
|
| 2.9995 | 13236 | - | - | 0.9866 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.45.2 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### ContrastiveLoss |
|
```bibtex |
|
@inproceedings{hadsell2006dimensionality, |
|
author={Hadsell, R. and Chopra, S. and LeCun, Y.}, |
|
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, |
|
title={Dimensionality Reduction by Learning an Invariant Mapping}, |
|
year={2006}, |
|
volume={2}, |
|
number={}, |
|
pages={1735-1742}, |
|
doi={10.1109/CVPR.2006.100} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |