paul
update model card README.md
b3cfde9
metadata
license: other
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: mit-b2-fv-finetuned-memes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8323029366306027
          - name: Precision
            type: precision
            value: 0.831217385971583
          - name: Recall
            type: recall
            value: 0.8323029366306027
          - name: F1
            type: f1
            value: 0.831492653119617

mit-b2-fv-finetuned-memes

This model is a fine-tuned version of nvidia/mit-b2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5984
  • Accuracy: 0.8323
  • Precision: 0.8312
  • Recall: 0.8323
  • F1: 0.8315

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3683 0.99 20 1.1798 0.5703 0.4914 0.5703 0.4915
1.0113 1.99 40 1.0384 0.6159 0.6813 0.6159 0.6274
0.7581 2.99 60 0.8348 0.6808 0.7377 0.6808 0.6840
0.6241 3.99 80 0.6034 0.7713 0.7864 0.7713 0.7735
0.4999 4.99 100 0.5481 0.7944 0.8000 0.7944 0.7909
0.3981 5.99 120 0.5253 0.8022 0.8091 0.8022 0.8000
0.3484 6.99 140 0.4688 0.8238 0.8147 0.8238 0.8146
0.3142 7.99 160 0.6245 0.7867 0.8209 0.7867 0.7920
0.2339 8.99 180 0.5053 0.8362 0.8426 0.8362 0.8355
0.2284 9.99 200 0.5070 0.8230 0.8220 0.8230 0.8187
0.1824 10.99 220 0.5780 0.8006 0.8138 0.8006 0.8035
0.1561 11.99 240 0.5429 0.8253 0.8197 0.8253 0.8218
0.1229 12.99 260 0.5325 0.8331 0.8296 0.8331 0.8303
0.1232 13.99 280 0.5595 0.8277 0.8290 0.8277 0.8273
0.118 14.99 300 0.5974 0.8292 0.8345 0.8292 0.8299
0.11 15.99 320 0.5796 0.8253 0.8228 0.8253 0.8231
0.0948 16.99 340 0.5581 0.8346 0.8358 0.8346 0.8349
0.0985 17.99 360 0.5700 0.8338 0.8301 0.8338 0.8318
0.0821 18.99 380 0.5756 0.8331 0.8343 0.8331 0.8335
0.0813 19.99 400 0.5984 0.8323 0.8312 0.8323 0.8315

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1