|
--- |
|
license: other |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: mit-b2-fv-finetuned-memes |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8323029366306027 |
|
- name: Precision |
|
type: precision |
|
value: 0.831217385971583 |
|
- name: Recall |
|
type: recall |
|
value: 0.8323029366306027 |
|
- name: F1 |
|
type: f1 |
|
value: 0.831492653119617 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mit-b2-fv-finetuned-memes |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5984 |
|
- Accuracy: 0.8323 |
|
- Precision: 0.8312 |
|
- Recall: 0.8323 |
|
- F1: 0.8315 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00012 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.3683 | 0.99 | 20 | 1.1798 | 0.5703 | 0.4914 | 0.5703 | 0.4915 | |
|
| 1.0113 | 1.99 | 40 | 1.0384 | 0.6159 | 0.6813 | 0.6159 | 0.6274 | |
|
| 0.7581 | 2.99 | 60 | 0.8348 | 0.6808 | 0.7377 | 0.6808 | 0.6840 | |
|
| 0.6241 | 3.99 | 80 | 0.6034 | 0.7713 | 0.7864 | 0.7713 | 0.7735 | |
|
| 0.4999 | 4.99 | 100 | 0.5481 | 0.7944 | 0.8000 | 0.7944 | 0.7909 | |
|
| 0.3981 | 5.99 | 120 | 0.5253 | 0.8022 | 0.8091 | 0.8022 | 0.8000 | |
|
| 0.3484 | 6.99 | 140 | 0.4688 | 0.8238 | 0.8147 | 0.8238 | 0.8146 | |
|
| 0.3142 | 7.99 | 160 | 0.6245 | 0.7867 | 0.8209 | 0.7867 | 0.7920 | |
|
| 0.2339 | 8.99 | 180 | 0.5053 | 0.8362 | 0.8426 | 0.8362 | 0.8355 | |
|
| 0.2284 | 9.99 | 200 | 0.5070 | 0.8230 | 0.8220 | 0.8230 | 0.8187 | |
|
| 0.1824 | 10.99 | 220 | 0.5780 | 0.8006 | 0.8138 | 0.8006 | 0.8035 | |
|
| 0.1561 | 11.99 | 240 | 0.5429 | 0.8253 | 0.8197 | 0.8253 | 0.8218 | |
|
| 0.1229 | 12.99 | 260 | 0.5325 | 0.8331 | 0.8296 | 0.8331 | 0.8303 | |
|
| 0.1232 | 13.99 | 280 | 0.5595 | 0.8277 | 0.8290 | 0.8277 | 0.8273 | |
|
| 0.118 | 14.99 | 300 | 0.5974 | 0.8292 | 0.8345 | 0.8292 | 0.8299 | |
|
| 0.11 | 15.99 | 320 | 0.5796 | 0.8253 | 0.8228 | 0.8253 | 0.8231 | |
|
| 0.0948 | 16.99 | 340 | 0.5581 | 0.8346 | 0.8358 | 0.8346 | 0.8349 | |
|
| 0.0985 | 17.99 | 360 | 0.5700 | 0.8338 | 0.8301 | 0.8338 | 0.8318 | |
|
| 0.0821 | 18.99 | 380 | 0.5756 | 0.8331 | 0.8343 | 0.8331 | 0.8335 | |
|
| 0.0813 | 19.99 | 400 | 0.5984 | 0.8323 | 0.8312 | 0.8323 | 0.8315 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0.dev0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.6.1.dev0 |
|
- Tokenizers 0.13.1 |
|
|