whisper-mind14-enUS / README.md
kairaamilanii's picture
Update README.md
8823fca verified
metadata
license: unknown
datasets:
  - PolyAI/minds14
language:
  - en
metrics:
  - accuracy
  - wer
  - f1
  - bleu
base_model:
  - openai/whisper-tiny
pipeline_tag: automatic-speech-recognition
model-index:
  - name: whisper-mind14-enUS
    results:
      - task:
          type: ASR
        dataset:
          name: minds-14
          type: enUS
        metrics:
          - name: Accuracy
            type: Accuracy
            value: 62.25
      - task:
          type: ASR
        dataset:
          name: minds-14
          type: enUS
        metrics:
          - name: wer
            type: wer
            value: 0.38%
      - task:
          type: ASR
        dataset:
          name: minds-14
          type: enUS
        metrics:
          - name: f1
            type: f1
            value: 0.6722
      - task:
          type: ASR
        dataset:
          name: minds-14
          type: enUS
        metrics:
          - name: bleu
            type: bleu
            value: 0.0235

this model based on whisper-tiny model that trained with minds-14 dataset, only trained in english version : enUS

example of using model to classify intent:

>>> from transformers import pipeline

model_id = "kairaamilanii/whisper-mind14-enUS"

transcriber = pipeline(
    "automatic-speech-recognition",
    model=model_id,
    chunk_length_s=30,
    device="cuda:0" if torch.cuda.is_available() else "cpu",
)

audio_file = "/content/602b9a90963e11ccd901cbd0.wav"  # Replace with your audio file path

text = transcriber(audio_file)
text

example output:

{'text': "hello i was looking at my recent transactions and i saw that there's a payment that i didn't make will you be able to stop this thank you"}