metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
model-index:
- name: layoutlm-document-v2
results: []
layoutlm-document-v2
This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0036
- Ate de la facture: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
- Iret du fournisseur: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}
- Om du fournisseur: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
- Ontant tva: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
- Ontant total ht: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
- Ontant total ttc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
- Umero de bc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Ate de la facture | Iret du fournisseur | Om du fournisseur | Ontant tva | Ontant total ht | Ontant total ttc | Umero de bc | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.6209 | 1.0 | 6 | 1.0535 | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.625, 'recall': 1.0, 'f1': 0.7692307692307693, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.7619047619047619, 'recall': 0.8421052631578947, 'f1': 0.8, 'number': 19} | {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19} | {'precision': 0.4117647058823529, 'recall': 0.3333333333333333, 'f1': 0.36842105263157887, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | 0.7607 | 0.6794 | 0.7177 | 0.7863 |
0.8518 | 2.0 | 12 | 0.4979 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.7692307692307693, 'recall': 1.0, 'f1': 0.8695652173913044, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 0.8823529411764706, 'recall': 0.7894736842105263, 'f1': 0.8333333333333333, 'number': 19} | {'precision': 0.8333333333333334, 'recall': 0.7142857142857143, 'f1': 0.7692307692307692, 'number': 21} | {'precision': 1.0, 'recall': 0.4, 'f1': 0.5714285714285715, 'number': 10} | 0.9055 | 0.8779 | 0.8915 | 0.9084 |
0.4183 | 3.0 | 18 | 0.2090 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9047619047619048, 'recall': 1.0, 'f1': 0.9500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | 0.9771 | 0.9771 | 0.9771 | 0.9771 |
0.2071 | 4.0 | 24 | 0.1112 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9047619047619048, 'recall': 1.0, 'f1': 0.9500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | 0.9771 | 0.9771 | 0.9771 | 0.9771 |
0.084 | 5.0 | 30 | 0.0304 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0429 | 6.0 | 36 | 0.0146 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0183 | 7.0 | 42 | 0.0090 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.011 | 8.0 | 48 | 0.0045 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0081 | 9.0 | 54 | 0.0041 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0062 | 10.0 | 60 | 0.0124 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 0.9924 | 0.9924 | 0.9924 | 0.9924 |
0.005 | 11.0 | 66 | 0.0250 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 0.9924 | 0.9924 | 0.9924 | 0.9924 |
0.0047 | 12.0 | 72 | 0.0193 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 0.9924 | 0.9924 | 0.9924 | 0.9924 |
0.0073 | 13.0 | 78 | 0.0023 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0041 | 14.0 | 84 | 0.0034 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0044 | 15.0 | 90 | 0.0036 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1