ktaek94's picture
Upload 10 files
2bbd84f verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10501
  - loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
  - source_sentence: "이어 내년 4월부터 전자증명서는 건강보험자격확인서와 건강보험료 납부확인서 등 13종으로 늘어나고 사용처도 중앙부처는 물론 은행과 보험사 등으로도\_확대된다."
    sentences:
      - 4 보험료 납부유예  감면조치는 4월에 납부해야 하는 3 보험료부터 적용된다.
      -  외에는 모든 것에 만족했습니다.
      - 영하의 추운 날씨에는 장갑 잊지 말고  끼렴.
  - source_sentence: 야생동물 질병관리를 전담할 국가기관인 국립야생동물질병관리원이 올해 광주광역시 광산구 삼거동 일원에 개원 예정이다.
    sentences:
      - 위치는 좋으나 생활하기  불편합니다.
      - 역에서 매우 가깝고, 쇼핑몰과 쇼핑몰 사이에는 숙소가 있습니다.
      - 추후 인도네시아와도 화상회의  온라인 세미나를 개최할 예정이다.
  - source_sentence: 작은 먹거리는 숙소 들어오게 전에 사는걸 추천해요.
    sentences:
      - 제일 최근에 스팸이 도착한 시간을 알려줘
      - 저는 당신이 숙소에 들어오기 전에 작은 음식을 사는 것을 추천합니다.
      - 올해는 황사 며칠동안 왔어?
  - source_sentence: 언제 만나는 것이  좋으실까요, 저녁 일곱시? 여덟시?
    sentences:
      - 이번주 일요일 약속 언제인지 궁금해.
      - 전자레인지와 가스레인지 중에 요리하고 싶은 걸로 알려줘
      - 뜨거운물말고 찬물로 세탁하고 더운물로 헹궈야될  같지 않아?
  - source_sentence: 지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다
    sentences:
      - 지금까지 가본 호텔보다  좋은 숙소였습니다.
      - ‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.
      - 하루에 삼십분보단  시간 이상은 라디오 들어
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
co2_eq_emissions:
  emissions: 13.607209111220918
  energy_consumed: 0.0310949426904377
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 12th Gen Intel(R) Core(TM) i5-12400
  ram_total_size: 31.784194946289062
  hours_used: 0.154
  hardware_used: 1 x NVIDIA GeForce RTX 3060
model-index:
  - name: SentenceTransformer based on klue/roberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.34770715374416716
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.35560473197486514
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.3673847148331908
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.36460670798564826
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.36074518113660536
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.35482778401649034
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.21251176317804726
            name: Pearson Dot
          - type: spearman_dot
            value: 0.20063256899469895
            name: Spearman Dot
          - type: pearson_max
            value: 0.3673847148331908
            name: Pearson Max
          - type: spearman_max
            value: 0.36460670798564826
            name: Spearman Max
          - type: pearson_cosine
            value: 0.9591996448990093
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9206205258325634
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9531423622288514
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.920406431818358
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9532828644532834
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.9201721809761834
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9482313505749467
            name: Pearson Dot
          - type: spearman_dot
            value: 0.9016036223997308
            name: Spearman Dot
          - type: pearson_max
            value: 0.9591996448990093
            name: Pearson Max
          - type: spearman_max
            value: 0.9206205258325634
            name: Spearman Max

SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다',
    '지금까지 가본 호텔보다 더 좋은 숙소였습니다.',
    '‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.3477
spearman_cosine 0.3556
pearson_manhattan 0.3674
spearman_manhattan 0.3646
pearson_euclidean 0.3607
spearman_euclidean 0.3548
pearson_dot 0.2125
spearman_dot 0.2006
pearson_max 0.3674
spearman_max 0.3646

Semantic Similarity

Metric Value
pearson_cosine 0.9592
spearman_cosine 0.9206
pearson_manhattan 0.9531
spearman_manhattan 0.9204
pearson_euclidean 0.9533
spearman_euclidean 0.9202
pearson_dot 0.9482
spearman_dot 0.9016
pearson_max 0.9592
spearman_max 0.9206

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,501 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 7 tokens
    • mean: 20.14 tokens
    • max: 59 tokens
    • min: 7 tokens
    • mean: 19.71 tokens
    • max: 68 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    가스레인지 사용하지 않도록 유의해주세요 가스레인지 사용은 삼가주세요 0.74
    이번주하고 다음주 중에 언제 동기 모임이 있어? 언제 자연어처리 학회 논문 접수가 마감되나요? 0.02
    또한 각 부처는 생활방역 관련 업무를 종합·체계적으로 수행하기 위해 기관별로 생활방역 전담팀(TF)을 구성한다. 또한 생활방지와 관련된 업무를 종합적이고 체계적으로 수행하기 위하여 각 부서별로 생활방역 전담 태스크포스(TF)를 구성하여야 합니다. 0.72
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_max
0 0 - 0.3646
0.7610 500 0.0278 -
1.0 657 - 0.9187
1.5221 1000 0.0085 0.9117
2.0 1314 - 0.9201
2.2831 1500 0.0044 -
3.0 1971 - 0.9186
3.0441 2000 0.0034 0.9199
3.8052 2500 0.0027 -
4.0 2628 - 0.9206

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.031 kWh
  • Carbon Emitted: 0.014 kg of CO2
  • Hours Used: 0.154 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3060
  • CPU Model: 12th Gen Intel(R) Core(TM) i5-12400
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.12.4
  • Sentence Transformers: 3.2.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.0
  • Tokenizers: 0.20.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}