metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
- source_sentence: "이어 내년 4월부터 전자증명서는 건강보험자격확인서와 건강보험료 납부확인서 등 13종으로 늘어나고 사용처도 중앙부처는 물론 은행과 보험사 등으로도\_확대된다."
sentences:
- 4대 보험료 납부유예 및 감면조치는 4월에 납부해야 하는 3월 보험료부터 적용된다.
- 그 외에는 모든 것에 만족했습니다.
- 영하의 추운 날씨에는 장갑 잊지 말고 꼭 끼렴.
- source_sentence: 야생동물 질병관리를 전담할 국가기관인 국립야생동물질병관리원이 올해 광주광역시 광산구 삼거동 일원에 개원 예정이다.
sentences:
- 위치는 좋으나 생활하기 좀 불편합니다.
- 역에서 매우 가깝고, 쇼핑몰과 쇼핑몰 사이에는 숙소가 있습니다.
- 추후 인도네시아와도 화상회의 및 온라인 세미나를 개최할 예정이다.
- source_sentence: 작은 먹거리는 숙소 들어오게 전에 사는걸 추천해요.
sentences:
- 제일 최근에 스팸이 도착한 시간을 알려줘
- 저는 당신이 숙소에 들어오기 전에 작은 음식을 사는 것을 추천합니다.
- 올해는 황사 며칠동안 왔어?
- source_sentence: 언제 만나는 것이 더 좋으실까요, 저녁 일곱시? 여덟시?
sentences:
- 이번주 일요일 약속 언제인지 궁금해.
- 전자레인지와 가스레인지 중에 요리하고 싶은 걸로 알려줘
- 뜨거운물말고 찬물로 세탁하고 더운물로 헹궈야될 것 같지 않아?
- source_sentence: 지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다
sentences:
- 지금까지 가본 호텔보다 더 좋은 숙소였습니다.
- ‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.
- 하루에 삼십분보단 한 시간 이상은 라디오 들어
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
co2_eq_emissions:
emissions: 13.607209111220918
energy_consumed: 0.0310949426904377
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 12th Gen Intel(R) Core(TM) i5-12400
ram_total_size: 31.784194946289062
hours_used: 0.154
hardware_used: 1 x NVIDIA GeForce RTX 3060
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.34770715374416716
name: Pearson Cosine
- type: spearman_cosine
value: 0.35560473197486514
name: Spearman Cosine
- type: pearson_manhattan
value: 0.3673847148331908
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.36460670798564826
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.36074518113660536
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.35482778401649034
name: Spearman Euclidean
- type: pearson_dot
value: 0.21251176317804726
name: Pearson Dot
- type: spearman_dot
value: 0.20063256899469895
name: Spearman Dot
- type: pearson_max
value: 0.3673847148331908
name: Pearson Max
- type: spearman_max
value: 0.36460670798564826
name: Spearman Max
- type: pearson_cosine
value: 0.9591996448990093
name: Pearson Cosine
- type: spearman_cosine
value: 0.9206205258325634
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9531423622288514
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.920406431818358
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9532828644532834
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9201721809761834
name: Spearman Euclidean
- type: pearson_dot
value: 0.9482313505749467
name: Pearson Dot
- type: spearman_dot
value: 0.9016036223997308
name: Spearman Dot
- type: pearson_max
value: 0.9591996448990093
name: Pearson Max
- type: spearman_max
value: 0.9206205258325634
name: Spearman Max
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다',
'지금까지 가본 호텔보다 더 좋은 숙소였습니다.',
'‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3477 |
spearman_cosine | 0.3556 |
pearson_manhattan | 0.3674 |
spearman_manhattan | 0.3646 |
pearson_euclidean | 0.3607 |
spearman_euclidean | 0.3548 |
pearson_dot | 0.2125 |
spearman_dot | 0.2006 |
pearson_max | 0.3674 |
spearman_max | 0.3646 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9592 |
spearman_cosine | 0.9206 |
pearson_manhattan | 0.9531 |
spearman_manhattan | 0.9204 |
pearson_euclidean | 0.9533 |
spearman_euclidean | 0.9202 |
pearson_dot | 0.9482 |
spearman_dot | 0.9016 |
pearson_max | 0.9592 |
spearman_max | 0.9206 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 20.14 tokens
- max: 59 tokens
- min: 7 tokens
- mean: 19.71 tokens
- max: 68 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 가스레인지 사용하지 않도록 유의해주세요
가스레인지 사용은 삼가주세요
0.74
이번주하고 다음주 중에 언제 동기 모임이 있어?
언제 자연어처리 학회 논문 접수가 마감되나요?
0.02
또한 각 부처는 생활방역 관련 업무를 종합·체계적으로 수행하기 위해 기관별로 생활방역 전담팀(TF)을 구성한다.
또한 생활방지와 관련된 업무를 종합적이고 체계적으로 수행하기 위하여 각 부서별로 생활방역 전담 태스크포스(TF)를 구성하여야 합니다.
0.72
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_max |
---|---|---|---|
0 | 0 | - | 0.3646 |
0.7610 | 500 | 0.0278 | - |
1.0 | 657 | - | 0.9187 |
1.5221 | 1000 | 0.0085 | 0.9117 |
2.0 | 1314 | - | 0.9201 |
2.2831 | 1500 | 0.0044 | - |
3.0 | 1971 | - | 0.9186 |
3.0441 | 2000 | 0.0034 | 0.9199 |
3.8052 | 2500 | 0.0027 | - |
4.0 | 2628 | - | 0.9206 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.031 kWh
- Carbon Emitted: 0.014 kg of CO2
- Hours Used: 0.154 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3060
- CPU Model: 12th Gen Intel(R) Core(TM) i5-12400
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}