|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:10501
|
|
- loss:CosineSimilarityLoss
|
|
base_model: klue/roberta-base
|
|
widget:
|
|
- source_sentence: 이어 내년 4월부터 전자증명서는 건강보험자격확인서와 건강보험료 납부확인서 등 13종으로 늘어나고 사용처도 중앙부처는
|
|
물론 은행과 보험사 등으로도 확대된다.
|
|
sentences:
|
|
- 4대 보험료 납부유예 및 감면조치는 4월에 납부해야 하는 3월 보험료부터 적용된다.
|
|
- 그 외에는 모든 것에 만족했습니다.
|
|
- 영하의 추운 날씨에는 장갑 잊지 말고 꼭 끼렴.
|
|
- source_sentence: 야생동물 질병관리를 전담할 국가기관인 국립야생동물질병관리원이 올해 광주광역시 광산구 삼거동 일원에 개원 예정이다.
|
|
sentences:
|
|
- 위치는 좋으나 생활하기 좀 불편합니다.
|
|
- 역에서 매우 가깝고, 쇼핑몰과 쇼핑몰 사이에는 숙소가 있습니다.
|
|
- 추후 인도네시아와도 화상회의 및 온라인 세미나를 개최할 예정이다.
|
|
- source_sentence: 작은 먹거리는 숙소 들어오게 전에 사는걸 추천해요.
|
|
sentences:
|
|
- 제일 최근에 스팸이 도착한 시간을 알려줘
|
|
- 저는 당신이 숙소에 들어오기 전에 작은 음식을 사는 것을 추천합니다.
|
|
- 올해는 황사 며칠동안 왔어?
|
|
- source_sentence: 언제 만나는 것이 더 좋으실까요, 저녁 일곱시? 여덟시?
|
|
sentences:
|
|
- 이번주 일요일 약속 언제인지 궁금해.
|
|
- 전자레인지와 가스레인지 중에 요리하고 싶은 걸로 알려줘
|
|
- 뜨거운물말고 찬물로 세탁하고 더운물로 헹궈야될 것 같지 않아?
|
|
- source_sentence: 지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다
|
|
sentences:
|
|
- 지금까지 가본 호텔보다 더 좋은 숙소였습니다.
|
|
- ‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.
|
|
- 하루에 삼십분보단 한 시간 이상은 라디오 들어
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
- pearson_manhattan
|
|
- spearman_manhattan
|
|
- pearson_euclidean
|
|
- spearman_euclidean
|
|
- pearson_dot
|
|
- spearman_dot
|
|
- pearson_max
|
|
- spearman_max
|
|
co2_eq_emissions:
|
|
emissions: 13.607209111220918
|
|
energy_consumed: 0.0310949426904377
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 12th Gen Intel(R) Core(TM) i5-12400
|
|
ram_total_size: 31.784194946289062
|
|
hours_used: 0.154
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3060
|
|
model-index:
|
|
- name: SentenceTransformer based on klue/roberta-base
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: Unknown
|
|
type: unknown
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.34770715374416716
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.35560473197486514
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.3673847148331908
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.36460670798564826
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.36074518113660536
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.35482778401649034
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.21251176317804726
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.20063256899469895
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.3673847148331908
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.36460670798564826
|
|
name: Spearman Max
|
|
- type: pearson_cosine
|
|
value: 0.9591996448990093
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.9206205258325634
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.9531423622288514
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.920406431818358
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.9532828644532834
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.9201721809761834
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.9482313505749467
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.9016036223997308
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.9591996448990093
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.9206205258325634
|
|
name: Spearman Max
|
|
---
|
|
|
|
# SentenceTransformer based on klue/roberta-base
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("sentence_transformers_model_id")
|
|
# Run inference
|
|
sentences = [
|
|
'지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다',
|
|
'지금까지 가본 호텔보다 더 좋은 숙소였습니다.',
|
|
'‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:-------------------|:-----------|
|
|
| pearson_cosine | 0.3477 |
|
|
| spearman_cosine | 0.3556 |
|
|
| pearson_manhattan | 0.3674 |
|
|
| spearman_manhattan | 0.3646 |
|
|
| pearson_euclidean | 0.3607 |
|
|
| spearman_euclidean | 0.3548 |
|
|
| pearson_dot | 0.2125 |
|
|
| spearman_dot | 0.2006 |
|
|
| pearson_max | 0.3674 |
|
|
| **spearman_max** | **0.3646** |
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:-------------------|:-----------|
|
|
| pearson_cosine | 0.9592 |
|
|
| spearman_cosine | 0.9206 |
|
|
| pearson_manhattan | 0.9531 |
|
|
| spearman_manhattan | 0.9204 |
|
|
| pearson_euclidean | 0.9533 |
|
|
| spearman_euclidean | 0.9202 |
|
|
| pearson_dot | 0.9482 |
|
|
| spearman_dot | 0.9016 |
|
|
| pearson_max | 0.9592 |
|
|
| **spearman_max** | **0.9206** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 10,501 training samples
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence_0 | sentence_1 | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.71 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence_0 | sentence_1 | label |
|
|
|:----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:------------------|
|
|
| <code>가스레인지 사용하지 않도록 유의해주세요</code> | <code>가스레인지 사용은 삼가주세요</code> | <code>0.74</code> |
|
|
| <code>이번주하고 다음주 중에 언제 동기 모임이 있어?</code> | <code>언제 자연어처리 학회 논문 접수가 마감되나요?</code> | <code>0.02</code> |
|
|
| <code>또한 각 부처는 생활방역 관련 업무를 종합·체계적으로 수행하기 위해 기관별로 생활방역 전담팀(TF)을 구성한다.</code> | <code>또한 생활방지와 관련된 업무를 종합적이고 체계적으로 수행하기 위하여 각 부서별로 생활방역 전담 태스크포스(TF)를 구성하여야 합니다.</code> | <code>0.72</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `num_train_epochs`: 4
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1
|
|
- `num_train_epochs`: 4
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.0
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | spearman_max |
|
|
|:------:|:----:|:-------------:|:------------:|
|
|
| 0 | 0 | - | 0.3646 |
|
|
| 0.7610 | 500 | 0.0278 | - |
|
|
| 1.0 | 657 | - | 0.9187 |
|
|
| 1.5221 | 1000 | 0.0085 | 0.9117 |
|
|
| 2.0 | 1314 | - | 0.9201 |
|
|
| 2.2831 | 1500 | 0.0044 | - |
|
|
| 3.0 | 1971 | - | 0.9186 |
|
|
| 3.0441 | 2000 | 0.0034 | 0.9199 |
|
|
| 3.8052 | 2500 | 0.0027 | - |
|
|
| 4.0 | 2628 | - | 0.9206 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.031 kWh
|
|
- **Carbon Emitted**: 0.014 kg of CO2
|
|
- **Hours Used**: 0.154 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3060
|
|
- **CPU Model**: 12th Gen Intel(R) Core(TM) i5-12400
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.12.4
|
|
- Sentence Transformers: 3.2.1
|
|
- Transformers: 4.45.2
|
|
- PyTorch: 2.4.0+cu121
|
|
- Accelerate: 0.29.3
|
|
- Datasets: 2.19.0
|
|
- Tokenizers: 0.20.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |