deberta-v3-base_on5 / README.md
lambdavi's picture
End of training
9f59678
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
datasets:
  - ontonotes5
model-index:
  - name: deberta-v3-base_on5
    results: []

deberta-v3-base_on5

This model is a fine-tuned version of microsoft/deberta-v3-base on the ontonotes5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0776
  • F1-type-match: 0.9325
  • F1-partial: 0.9488
  • F1-strict: 0.9046
  • F1-exact: 0.9299

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1-type-match F1-partial F1-strict F1-exact
0.0427 1.0 936 0.0674 0.9291 0.9452 0.8986 0.9246
0.0235 2.0 1873 0.0722 0.9281 0.9464 0.9002 0.9275
0.0148 3.0 2808 0.0776 0.9325 0.9488 0.9046 0.9299

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0