metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:221
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: |
Name : Baku
Category: Ride Sharing
Department: Sales
Location: Baku, Azerbaijan
Amount: 1247.88
Card: Client Engagement Activities
Trip Name: unknown
sentences:
- |
Name : Dome Interactive Designs
Category: Digital Display Solutions, Event Technology Rentals
Department: Sales
Location: Kyoto, Japan
Amount: 1832.34
Card: Virtual Reality Experience Stand
Trip Name: Global Tech Expo 2023
- |
Name : Il Vino e L'Arte
Category: Culinary Experience, Cultural Event Venue
Department: Marketing
Location: Rome, Italy
Amount: 748.32
Card: Cultural Engagement Dinner
Trip Name: unknown
- |
Name : Nordic Assurance Group
Category: Insurance Consulting, Risk Management Services
Department: Legal
Location: Oslo, Norway
Amount: 1225.75
Card: Annual Risk Assessment
Trip Name: unknown
- source_sentence: |
Name : Omni Utility Services
Category: Facility Management, Environmental Consulting
Department: Office Administration
Location: Melbourne, Australia
Amount: 1421.59
Card: Bi-monthly Utility Management
Trip Name: unknown
sentences:
- |
Name : InnovaThink Global
Category: Management Consultancy, Technical Training Services
Department: HR
Location: Zurich, Switzerland
Amount: 1675.32
Card: Innovation and Efficiency Program
Trip Name: unknown
- |
Name : Aperio Global Insights
Category: Strategic Business Consulting, Data Analytics Services
Department: Finance
Location: Chicago, IL
Amount: 3456.78
Card: Global Market Expansion Evaluation
Trip Name: unknown
- |
Name : NetWise Solutions
Category: Data Transfer Services, Digital Infrastructure
Department: Product
Location: Singapore
Amount: 1579.42
Card: Global Network Enhancement
Trip Name: unknown
- source_sentence: |
Name : Sphere Financial Systems
Category: Financial Management Services, International Billing Solutions
Department: Finance
Location: London, United Kingdom
Amount: 856.47
Card: Cross-Border Transaction Reconciliation
Trip Name: unknown
sentences:
- |
Name : Telestream Innovations
Category: Subscription Services, Internet & Network Services
Department: IT Operations
Location: Amsterdam, Netherlands
Amount: 1389.54
Card: Unified Communications Platform
Trip Name: unknown
- |
Name : Guava Growth Solutions
Category: Employee Engagement Platform, Team Building Activities
Department: HR
Location: San Francisco, USA
Amount: 1346.75
Card: Annual Team Cohesion Initiative
Trip Name: unknown
- |
Name : Anthro Insights
Category: Talent Acquisition Services, Corporate Education Programs
Department: Human Resource
Location: London, UK
Amount: 1440.75
Card: Diversity & Inclusion
Trip Name: unknown
- source_sentence: |
Name : NexGen Comms
Category: Telecom Services, Communications Solutions
Department: Sales
Location: Berlin, Germany
Amount: 879.45
Card: Q2 Client Outreach Program
Trip Name: unknown
sentences:
- |
Name : Kreutz & Partners
Category: Strategic Consulting
Department: Marketing
Location: Zurich, Switzerland
Amount: 982.75
Card: Digital Growth Strategy
Trip Name: unknown
- |
Name : Vigilant Protec
Category: Consulting Services, Cybersecurity Solutions
Department: Legal
Location: London, UK
Amount: 1987.65
Card: Global Compliance Enhancement
Trip Name: unknown
- |
Name : HelioNet Interactive
Category: Customer Engagement Platforms, Software Development Tools
Department: Product
Location: Vancouver, Canada
Amount: 1367.29
Card: Product Improvement Initiative
Trip Name: unknown
- source_sentence: |
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown
sentences:
- |
Name : Freenet AG
Category: Telecommunication Services
Department: IT Operations
Location: Zurich, Switzerland
Amount: 2794.37
Card: Infrastructure Support Services
Trip Name: unknown
- |
Name : CloudFlare Inc.
Category: Internet & Network Services, SaaS
Department: IT Operations
Location: New York, NY
Amount: 2000.0
Card: Annual Cloud Services Budget
Trip Name: unknown
- |
Name : EcoClean Systems
Category: Environmental Services, Industrial Equipment Care
Department: Office Administration
Location: San Francisco, CA
Amount: 952.63
Card: Essential Facility Sustainability
Trip Name: unknown
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.8371040723981901
name: Cosine Accuracy
- type: dot_accuracy
value: 0.16289592760180996
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8280542986425339
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8371040723981901
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8371040723981901
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 1
name: Cosine Accuracy
- type: dot_accuracy
value: 0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9714285714285714
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1
name: Euclidean Accuracy
- type: max_accuracy
value: 1
name: Max Accuracy
SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lzwcv/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : Apex Innovations Group\nCategory: Business Consulting, Training Services\nDepartment: Executive\nLocation: Sydney, Australia\nAmount: 1575.34\nCard: Leadership Development Program\nTrip Name: unknown\n',
'\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n',
'\nName : EcoClean Systems\nCategory: Environmental Services, Industrial Equipment Care\nDepartment: Office Administration\nLocation: San Francisco, CA\nAmount: 952.63\nCard: Essential Facility Sustainability\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
bge-base-en-train - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8371 |
| dot_accuracy | 0.1629 |
| manhattan_accuracy | 0.8281 |
| euclidean_accuracy | 0.8371 |
| max_accuracy | 0.8371 |
Triplet
- Dataset:
bge-base-en-eval - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 1.0 |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 0.9714 |
| euclidean_accuracy | 1.0 |
| max_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 221 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 221 samples:
sentence label type string int details - min: 33 tokens
- mean: 39.6 tokens
- max: 49 tokens
- 0: ~4.52%
- 1: ~4.52%
- 2: ~5.43%
- 3: ~2.26%
- 4: ~2.26%
- 5: ~2.71%
- 6: ~3.17%
- 7: ~3.62%
- 8: ~2.71%
- 9: ~5.43%
- 10: ~2.71%
- 11: ~4.07%
- 12: ~1.81%
- 13: ~4.52%
- 14: ~4.98%
- 15: ~3.62%
- 16: ~4.52%
- 17: ~4.98%
- 18: ~4.52%
- 19: ~2.71%
- 20: ~2.71%
- 21: ~4.52%
- 22: ~3.62%
- 23: ~4.07%
- 24: ~3.17%
- 25: ~4.98%
- 26: ~1.81%
- Samples:
sentence label
Name : Quantifire Insights
Category: Predictive Analytics Solutions
Department: Marketing
Location: Zurich, Switzerland
Amount: 1275.58
Card: Customer Engagement Enhancement
Trip Name: unknown0
Name : ElevateLearning Solutions
Category: E-Learning Platforms, Collaborative Software
Department: Engineering
Location: Toronto, Canada
Amount: 1523.89
Card: Dev Team Skill Boosting Initiative
Trip Name: unknown1
Name : Innovative Patents Co.
Category: Intellectual Property Services, Legal Services
Department: Legal
Location: New York, NY
Amount: 3250.0
Card: Patent Acquisition Fund
Trip Name: unknown2 - Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 55 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 55 samples:
sentence label type string int details - min: 32 tokens
- mean: 39.73 tokens
- max: 47 tokens
- 0: ~1.82%
- 1: ~5.45%
- 2: ~9.09%
- 3: ~3.64%
- 4: ~5.45%
- 5: ~1.82%
- 6: ~1.82%
- 7: ~5.45%
- 10: ~5.45%
- 11: ~5.45%
- 12: ~3.64%
- 13: ~1.82%
- 14: ~3.64%
- 15: ~3.64%
- 16: ~7.27%
- 17: ~1.82%
- 18: ~5.45%
- 19: ~5.45%
- 20: ~1.82%
- 21: ~1.82%
- 22: ~3.64%
- 23: ~1.82%
- 24: ~7.27%
- 25: ~3.64%
- 26: ~1.82%
- Samples:
sentence label
Name : CyberGuard Provisions
Category: Security Software Solutions, Data Protection Services
Department: Information Security
Location: San Francisco, CA
Amount: 879.92
Card: Digital Fortress Action Plan
Trip Name: unknown17
Name : Sphere Financial Systems
Category: Financial Management Services, International Billing Solutions
Department: Finance
Location: London, United Kingdom
Amount: 856.47
Card: Cross-Border Transaction Reconciliation
Trip Name: unknown7
Name : RBC
Category: Transaction Processing, Financial Services
Department: Finance
Location: Limassol, Cyprus
Amount: 843.56
Card: Quarterly Financial Management
Trip Name: unknown7 - Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|---|---|---|---|
| 0 | 0 | - | 0.8371 |
| 5.0 | 35 | 1.0 | - |
Framework Versions
- Python: 3.10.0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}