|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:221 |
|
|
- loss:BatchSemiHardTripletLoss |
|
|
base_model: BAAI/bge-base-en |
|
|
widget: |
|
|
- source_sentence: ' |
|
|
|
|
|
Name : Baku |
|
|
|
|
|
Category: Ride Sharing |
|
|
|
|
|
Department: Sales |
|
|
|
|
|
Location: Baku, Azerbaijan |
|
|
|
|
|
Amount: 1247.88 |
|
|
|
|
|
Card: Client Engagement Activities |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
sentences: |
|
|
- ' |
|
|
|
|
|
Name : Dome Interactive Designs |
|
|
|
|
|
Category: Digital Display Solutions, Event Technology Rentals |
|
|
|
|
|
Department: Sales |
|
|
|
|
|
Location: Kyoto, Japan |
|
|
|
|
|
Amount: 1832.34 |
|
|
|
|
|
Card: Virtual Reality Experience Stand |
|
|
|
|
|
Trip Name: Global Tech Expo 2023 |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : Il Vino e L''Arte |
|
|
|
|
|
Category: Culinary Experience, Cultural Event Venue |
|
|
|
|
|
Department: Marketing |
|
|
|
|
|
Location: Rome, Italy |
|
|
|
|
|
Amount: 748.32 |
|
|
|
|
|
Card: Cultural Engagement Dinner |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : Nordic Assurance Group |
|
|
|
|
|
Category: Insurance Consulting, Risk Management Services |
|
|
|
|
|
Department: Legal |
|
|
|
|
|
Location: Oslo, Norway |
|
|
|
|
|
Amount: 1225.75 |
|
|
|
|
|
Card: Annual Risk Assessment |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- source_sentence: ' |
|
|
|
|
|
Name : Omni Utility Services |
|
|
|
|
|
Category: Facility Management, Environmental Consulting |
|
|
|
|
|
Department: Office Administration |
|
|
|
|
|
Location: Melbourne, Australia |
|
|
|
|
|
Amount: 1421.59 |
|
|
|
|
|
Card: Bi-monthly Utility Management |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
sentences: |
|
|
- ' |
|
|
|
|
|
Name : InnovaThink Global |
|
|
|
|
|
Category: Management Consultancy, Technical Training Services |
|
|
|
|
|
Department: HR |
|
|
|
|
|
Location: Zurich, Switzerland |
|
|
|
|
|
Amount: 1675.32 |
|
|
|
|
|
Card: Innovation and Efficiency Program |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : Aperio Global Insights |
|
|
|
|
|
Category: Strategic Business Consulting, Data Analytics Services |
|
|
|
|
|
Department: Finance |
|
|
|
|
|
Location: Chicago, IL |
|
|
|
|
|
Amount: 3456.78 |
|
|
|
|
|
Card: Global Market Expansion Evaluation |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : NetWise Solutions |
|
|
|
|
|
Category: Data Transfer Services, Digital Infrastructure |
|
|
|
|
|
Department: Product |
|
|
|
|
|
Location: Singapore |
|
|
|
|
|
Amount: 1579.42 |
|
|
|
|
|
Card: Global Network Enhancement |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- source_sentence: ' |
|
|
|
|
|
Name : Sphere Financial Systems |
|
|
|
|
|
Category: Financial Management Services, International Billing Solutions |
|
|
|
|
|
Department: Finance |
|
|
|
|
|
Location: London, United Kingdom |
|
|
|
|
|
Amount: 856.47 |
|
|
|
|
|
Card: Cross-Border Transaction Reconciliation |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
sentences: |
|
|
- ' |
|
|
|
|
|
Name : Telestream Innovations |
|
|
|
|
|
Category: Subscription Services, Internet & Network Services |
|
|
|
|
|
Department: IT Operations |
|
|
|
|
|
Location: Amsterdam, Netherlands |
|
|
|
|
|
Amount: 1389.54 |
|
|
|
|
|
Card: Unified Communications Platform |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : Guava Growth Solutions |
|
|
|
|
|
Category: Employee Engagement Platform, Team Building Activities |
|
|
|
|
|
Department: HR |
|
|
|
|
|
Location: San Francisco, USA |
|
|
|
|
|
Amount: 1346.75 |
|
|
|
|
|
Card: Annual Team Cohesion Initiative |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : Anthro Insights |
|
|
|
|
|
Category: Talent Acquisition Services, Corporate Education Programs |
|
|
|
|
|
Department: Human Resource |
|
|
|
|
|
Location: London, UK |
|
|
|
|
|
Amount: 1440.75 |
|
|
|
|
|
Card: Diversity & Inclusion |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- source_sentence: ' |
|
|
|
|
|
Name : NexGen Comms |
|
|
|
|
|
Category: Telecom Services, Communications Solutions |
|
|
|
|
|
Department: Sales |
|
|
|
|
|
Location: Berlin, Germany |
|
|
|
|
|
Amount: 879.45 |
|
|
|
|
|
Card: Q2 Client Outreach Program |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
sentences: |
|
|
- ' |
|
|
|
|
|
Name : Kreutz & Partners |
|
|
|
|
|
Category: Strategic Consulting |
|
|
|
|
|
Department: Marketing |
|
|
|
|
|
Location: Zurich, Switzerland |
|
|
|
|
|
Amount: 982.75 |
|
|
|
|
|
Card: Digital Growth Strategy |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : Vigilant Protec |
|
|
|
|
|
Category: Consulting Services, Cybersecurity Solutions |
|
|
|
|
|
Department: Legal |
|
|
|
|
|
Location: London, UK |
|
|
|
|
|
Amount: 1987.65 |
|
|
|
|
|
Card: Global Compliance Enhancement |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : HelioNet Interactive |
|
|
|
|
|
Category: Customer Engagement Platforms, Software Development Tools |
|
|
|
|
|
Department: Product |
|
|
|
|
|
Location: Vancouver, Canada |
|
|
|
|
|
Amount: 1367.29 |
|
|
|
|
|
Card: Product Improvement Initiative |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- source_sentence: ' |
|
|
|
|
|
Name : Apex Innovations Group |
|
|
|
|
|
Category: Business Consulting, Training Services |
|
|
|
|
|
Department: Executive |
|
|
|
|
|
Location: Sydney, Australia |
|
|
|
|
|
Amount: 1575.34 |
|
|
|
|
|
Card: Leadership Development Program |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
sentences: |
|
|
- ' |
|
|
|
|
|
Name : Freenet AG |
|
|
|
|
|
Category: Telecommunication Services |
|
|
|
|
|
Department: IT Operations |
|
|
|
|
|
Location: Zurich, Switzerland |
|
|
|
|
|
Amount: 2794.37 |
|
|
|
|
|
Card: Infrastructure Support Services |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : CloudFlare Inc. |
|
|
|
|
|
Category: Internet & Network Services, SaaS |
|
|
|
|
|
Department: IT Operations |
|
|
|
|
|
Location: New York, NY |
|
|
|
|
|
Amount: 2000.0 |
|
|
|
|
|
Card: Annual Cloud Services Budget |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
- ' |
|
|
|
|
|
Name : EcoClean Systems |
|
|
|
|
|
Category: Environmental Services, Industrial Equipment Care |
|
|
|
|
|
Department: Office Administration |
|
|
|
|
|
Location: San Francisco, CA |
|
|
|
|
|
Amount: 952.63 |
|
|
|
|
|
Card: Essential Facility Sustainability |
|
|
|
|
|
Trip Name: unknown |
|
|
|
|
|
' |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy |
|
|
- dot_accuracy |
|
|
- manhattan_accuracy |
|
|
- euclidean_accuracy |
|
|
- max_accuracy |
|
|
model-index: |
|
|
- name: SentenceTransformer based on BAAI/bge-base-en |
|
|
results: |
|
|
- task: |
|
|
type: triplet |
|
|
name: Triplet |
|
|
dataset: |
|
|
name: bge base en train |
|
|
type: bge-base-en-train |
|
|
metrics: |
|
|
- type: cosine_accuracy |
|
|
value: 0.8371040723981901 |
|
|
name: Cosine Accuracy |
|
|
- type: dot_accuracy |
|
|
value: 0.16289592760180996 |
|
|
name: Dot Accuracy |
|
|
- type: manhattan_accuracy |
|
|
value: 0.8280542986425339 |
|
|
name: Manhattan Accuracy |
|
|
- type: euclidean_accuracy |
|
|
value: 0.8371040723981901 |
|
|
name: Euclidean Accuracy |
|
|
- type: max_accuracy |
|
|
value: 0.8371040723981901 |
|
|
name: Max Accuracy |
|
|
- task: |
|
|
type: triplet |
|
|
name: Triplet |
|
|
dataset: |
|
|
name: bge base en eval |
|
|
type: bge-base-en-eval |
|
|
metrics: |
|
|
- type: cosine_accuracy |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy |
|
|
- type: dot_accuracy |
|
|
value: 0.0 |
|
|
name: Dot Accuracy |
|
|
- type: manhattan_accuracy |
|
|
value: 0.9714285714285714 |
|
|
name: Manhattan Accuracy |
|
|
- type: euclidean_accuracy |
|
|
value: 1.0 |
|
|
name: Euclidean Accuracy |
|
|
- type: max_accuracy |
|
|
value: 1.0 |
|
|
name: Max Accuracy |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on BAAI/bge-base-en |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 768 tokens |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("lzwcv/finetuned-bge-base-en") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'\nName : Apex Innovations Group\nCategory: Business Consulting, Training Services\nDepartment: Executive\nLocation: Sydney, Australia\nAmount: 1575.34\nCard: Leadership Development Program\nTrip Name: unknown\n', |
|
|
'\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n', |
|
|
'\nName : EcoClean Systems\nCategory: Environmental Services, Industrial Equipment Care\nDepartment: Office Administration\nLocation: San Francisco, CA\nAmount: 952.63\nCard: Essential Facility Sustainability\nTrip Name: unknown\n', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Triplet |
|
|
* Dataset: `bge-base-en-train` |
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:-------------------|:-----------| |
|
|
| cosine_accuracy | 0.8371 | |
|
|
| dot_accuracy | 0.1629 | |
|
|
| manhattan_accuracy | 0.8281 | |
|
|
| euclidean_accuracy | 0.8371 | |
|
|
| **max_accuracy** | **0.8371** | |
|
|
|
|
|
#### Triplet |
|
|
* Dataset: `bge-base-en-eval` |
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:-------------------|:--------| |
|
|
| cosine_accuracy | 1.0 | |
|
|
| dot_accuracy | 0.0 | |
|
|
| manhattan_accuracy | 0.9714 | |
|
|
| euclidean_accuracy | 1.0 | |
|
|
| **max_accuracy** | **1.0** | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
|
* Size: 221 training samples |
|
|
* Columns: <code>sentence</code> and <code>label</code> |
|
|
* Approximate statistics based on the first 221 samples: |
|
|
| | sentence | label | |
|
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
|
| type | string | int | |
|
|
| details | <ul><li>min: 33 tokens</li><li>mean: 39.6 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~4.52%</li><li>1: ~4.52%</li><li>2: ~5.43%</li><li>3: ~2.26%</li><li>4: ~2.26%</li><li>5: ~2.71%</li><li>6: ~3.17%</li><li>7: ~3.62%</li><li>8: ~2.71%</li><li>9: ~5.43%</li><li>10: ~2.71%</li><li>11: ~4.07%</li><li>12: ~1.81%</li><li>13: ~4.52%</li><li>14: ~4.98%</li><li>15: ~3.62%</li><li>16: ~4.52%</li><li>17: ~4.98%</li><li>18: ~4.52%</li><li>19: ~2.71%</li><li>20: ~2.71%</li><li>21: ~4.52%</li><li>22: ~3.62%</li><li>23: ~4.07%</li><li>24: ~3.17%</li><li>25: ~4.98%</li><li>26: ~1.81%</li></ul> | |
|
|
* Samples: |
|
|
| sentence | label | |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
|
| <code><br>Name : Quantifire Insights<br>Category: Predictive Analytics Solutions<br>Department: Marketing<br>Location: Zurich, Switzerland<br>Amount: 1275.58<br>Card: Customer Engagement Enhancement<br>Trip Name: unknown<br></code> | <code>0</code> | |
|
|
| <code><br>Name : ElevateLearning Solutions<br>Category: E-Learning Platforms, Collaborative Software<br>Department: Engineering<br>Location: Toronto, Canada<br>Amount: 1523.89<br>Card: Dev Team Skill Boosting Initiative<br>Trip Name: unknown<br></code> | <code>1</code> | |
|
|
| <code><br>Name : Innovative Patents Co.<br>Category: Intellectual Property Services, Legal Services<br>Department: Legal<br>Location: New York, NY<br>Amount: 3250.0<br>Card: Patent Acquisition Fund<br>Trip Name: unknown<br></code> | <code>2</code> | |
|
|
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
|
* Size: 55 evaluation samples |
|
|
* Columns: <code>sentence</code> and <code>label</code> |
|
|
* Approximate statistics based on the first 55 samples: |
|
|
| | sentence | label | |
|
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
|
| type | string | int | |
|
|
| details | <ul><li>min: 32 tokens</li><li>mean: 39.73 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~1.82%</li><li>1: ~5.45%</li><li>2: ~9.09%</li><li>3: ~3.64%</li><li>4: ~5.45%</li><li>5: ~1.82%</li><li>6: ~1.82%</li><li>7: ~5.45%</li><li>10: ~5.45%</li><li>11: ~5.45%</li><li>12: ~3.64%</li><li>13: ~1.82%</li><li>14: ~3.64%</li><li>15: ~3.64%</li><li>16: ~7.27%</li><li>17: ~1.82%</li><li>18: ~5.45%</li><li>19: ~5.45%</li><li>20: ~1.82%</li><li>21: ~1.82%</li><li>22: ~3.64%</li><li>23: ~1.82%</li><li>24: ~7.27%</li><li>25: ~3.64%</li><li>26: ~1.82%</li></ul> | |
|
|
* Samples: |
|
|
| sentence | label | |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------| |
|
|
| <code><br>Name : CyberGuard Provisions<br>Category: Security Software Solutions, Data Protection Services<br>Department: Information Security<br>Location: San Francisco, CA<br>Amount: 879.92<br>Card: Digital Fortress Action Plan<br>Trip Name: unknown<br></code> | <code>17</code> | |
|
|
| <code><br>Name : Sphere Financial Systems<br>Category: Financial Management Services, International Billing Solutions<br>Department: Finance<br>Location: London, United Kingdom<br>Amount: 856.47<br>Card: Cross-Border Transaction Reconciliation<br>Trip Name: unknown<br></code> | <code>7</code> | |
|
|
| <code><br>Name : RBC<br>Category: Transaction Processing, Financial Services<br>Department: Finance<br>Location: Limassol, Cyprus<br>Amount: 843.56<br>Card: Quarterly Financial Management<br>Trip Name: unknown<br></code> | <code>7</code> | |
|
|
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `num_train_epochs`: 5 |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: False |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy | |
|
|
|:-----:|:----:|:-----------------------------:|:------------------------------:| |
|
|
| 0 | 0 | - | 0.8371 | |
|
|
| 5.0 | 35 | 1.0 | - | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.10.0 |
|
|
- Sentence Transformers: 3.1.1 |
|
|
- Transformers: 4.45.2 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.3.0 |
|
|
- Datasets: 3.2.0 |
|
|
- Tokenizers: 0.20.3 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### BatchSemiHardTripletLoss |
|
|
```bibtex |
|
|
@misc{hermans2017defense, |
|
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
|
year={2017}, |
|
|
eprint={1703.07737}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |