File size: 2,457 Bytes
4320eb9
c52ab5e
 
 
 
 
 
 
 
 
 
 
4320eb9
c52ab5e
 
 
 
 
 
9db3423
c52ab5e
1c9be2e
 
 
 
 
c52ab5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b6385
c52ab5e
 
 
 
 
1c9be2e
c52ab5e
 
 
1c9be2e
 
 
 
 
 
 
 
 
 
 
 
c52ab5e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_distilbert_fa_zwnj_base_ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_distilbert_fa_zwnj_base_ner

This model is a fine-tuned version of [HooshvareLab/distilbert-fa-zwnj-base](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base) on the mixed NER dataset collected from ARMAN, PEYMA, and WikiANN.
It achieves the following results on the evaluation set:
- Loss: 0.0343
- Precision: 0.9416
- Recall: 0.9549
- F1: 0.9482
- Accuracy: 0.9938

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1456        | 1.0   | 1821  | 0.0699          | 0.7847    | 0.8037 | 0.7941 | 0.9773   |
| 0.0551        | 2.0   | 3642  | 0.0456          | 0.8574    | 0.8875 | 0.8722 | 0.9858   |
| 0.0283        | 3.0   | 5463  | 0.0333          | 0.8957    | 0.9225 | 0.9089 | 0.9902   |
| 0.0161        | 4.0   | 7284  | 0.0299          | 0.9229    | 0.9374 | 0.9301 | 0.9921   |
| 0.0103        | 5.0   | 9105  | 0.0298          | 0.9314    | 0.9471 | 0.9392 | 0.9929   |
| 0.0069        | 6.0   | 10926 | 0.0323          | 0.9305    | 0.9513 | 0.9408 | 0.9930   |
| 0.0045        | 7.0   | 12747 | 0.0337          | 0.9363    | 0.9510 | 0.9436 | 0.9933   |
| 0.0031        | 8.0   | 14568 | 0.0339          | 0.9395    | 0.9526 | 0.9460 | 0.9937   |
| 0.0024        | 9.0   | 16389 | 0.0334          | 0.9392    | 0.9545 | 0.9468 | 0.9938   |
| 0.0017        | 10.0  | 18210 | 0.0343          | 0.9416    | 0.9549 | 0.9482 | 0.9938   |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1