|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- Abirate/english_quotes |
|
--- |
|
|
|
# Quantization 4Bits - 5.02 GB GPU memory usage for inference: |
|
|
|
** Vide same fine-tuning for GPT-J-6B: [https://huggingface.co/nlpulse/gpt-j-6b-english_quotes](https://huggingface.co/nlpulse/gpt-j-6b-english_quotes) |
|
|
|
``` |
|
$ nvidia-smi |
|
+-----------------------------------------------------------------------------+ |
|
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 | |
|
|-------------------------------+----------------------+----------------------+ |
|
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | |
|
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |
|
| | | MIG M. | |
|
|===============================+======================+======================| |
|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A | |
|
| 65% 74C P2 169W / 170W | 5028MiB / 12288MiB | 97% Default | |
|
| | | N/A | |
|
+-------------------------------+----------------------+----------------------+ |
|
``` |
|
|
|
## Fine-tuning |
|
``` |
|
3 epochs, all dataset samples (split=train), 939 steps |
|
1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 6.85 GB |
|
Duration: 1h54min |
|
|
|
|
|
$ nvidia-smi && free -h |
|
+-----------------------------------------------------------------------------+ |
|
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 | |
|
|-------------------------------+----------------------+----------------------+ |
|
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | |
|
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |
|
| | | MIG M. | |
|
|===============================+======================+======================| |
|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A | |
|
|100% 87C P2 168W / 170W | 6854MiB / 12288MiB | 98% Default | |
|
| | | N/A | |
|
+-------------------------------+----------------------+----------------------+ |
|
total used free shared buff/cache available |
|
Mem: 77Gi 13Gi 1.1Gi 116Mi 63Gi 63Gi |
|
Swap: 37Gi 3.8Gi 34Gi |
|
|
|
``` |
|
|
|
## Inference |
|
``` |
|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftConfig, PeftModel |
|
|
|
model_path = "nlpulse/llama2-7b-chat-english_quotes" |
|
|
|
# tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
# quantization config |
|
quant_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
# model adapter PEFT LoRA |
|
config = PeftConfig.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, |
|
quantization_config=quant_config, device_map={"":0}, use_auth_token=True) |
|
model = PeftModel.from_pretrained(model, model_path) |
|
|
|
# inference |
|
device = "cuda" |
|
text_list = ["Ask not what your country", "Be the change that", "You only live once, but", "I'm selfish, impatient and"] |
|
for text in text_list: |
|
inputs = tokenizer(text, return_tensors="pt").to(device) |
|
outputs = model.generate(**inputs, max_new_tokens=60) |
|
print('>> ', text, " => ", tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|
|
``` |
|
|
|
## Requirements |
|
``` |
|
pip install -U bitsandbytes |
|
pip install -U git+https://github.com/huggingface/transformers.git |
|
pip install -U git+https://github.com/huggingface/peft.git |
|
pip install -U accelerate |
|
pip install -U datasets |
|
pip install -U scipy |
|
``` |
|
|
|
## Scripts |
|
[https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/llama2-7b-chat](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/llama2-7b-chat) |
|
|
|
|
|
## References |
|
[QLoRa: Fine-Tune a Large Language Model on Your GPU](https://towardsdatascience.com/qlora-fine-tune-a-large-language-model-on-your-gpu-27bed5a03e2b) |
|
|
|
[Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes) |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.4.0.dev0 |