nazneen's picture
model documentation
3684bd2
|
raw
history blame
5.83 kB
---
language:
- en
- de
- fr
- it
- nl
tags:
- punctuation prediction
- punctuation
datasets: wmt/europarl
license: mit
widget:
- text: "Ho sentito che ti sei laureata il che mi fa molto piacere"
example_title: "Italian"
- text: "Tous les matins vers quatre heures mon père ouvrait la porte de ma chambre"
example_title: "French"
- text: "Ist das eine Frage Frau Müller"
example_title: "German"
- text: "My name is Clara and I live in Berkeley California"
example_title: "English"
metrics:
- f1
---
# Model Card for fullstop-punctuation-multilingual-base
# Model Details
## Model Description
The goal of this task consists in training NLP models that can predict the end of sentence (EOS) and punctuation marks on automatically generated or transcribed texts.
- **Developed by:** Oliver Guhr
- **Shared by [Optional]:** Oliver Guhr
- **Model type:** Token Classification
- **Language(s) (NLP):** English, German, French, Italian, Dutch
- **License:** MIT
- **Parent Model:** xlm-roberta-base
- **Resources for more information:**
- [GitHub Repo](https://github.com/oliverguhr/fullstop-deep-punctuation-prediction)
- [Associated Paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf)
# Uses
## Direct Use
This model can be used for the task of Token Classification
## Downstream Use [Optional]
More information needed.
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
The model authors note in the [associated paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf):
> The task consists in predicting EOS and punctua- tion marks on unpunctuated lowercased text. The organizers of the SeppNLG shared task provided 470 MB of English, German, French, and Italian text. This data set consists of a training and a de- velopment set.
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
More information needed
### Factors
More information needed
### Metrics
More information needed
## Results
### Classification report over all languages
```
precision recall f1-score support
0 0.99 0.99 0.99 47903344
. 0.94 0.95 0.95 2798780
, 0.85 0.84 0.85 3451618
? 0.88 0.85 0.87 88876
- 0.61 0.32 0.42 157863
: 0.72 0.52 0.60 103789
accuracy 0.98 54504270
macro avg 0.83 0.75 0.78 54504270
weighted avg 0.98 0.98 0.98 54504270
```
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed.
# Citation
**BibTeX:**
```bibtex
@article{guhr-EtAl:2021:fullstop,
title={FullStop: Multilingual Deep Models for Punctuation Prediction},
author = {Guhr, Oliver and Schumann, Anne-Kathrin and Bahrmann, Frank and Böhme, Hans Joachim},
booktitle = {Proceedings of the Swiss Text Analytics Conference 2021},
month = {June},
year = {2021},
address = {Winterthur, Switzerland},
publisher = {CEUR Workshop Proceedings},
url = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
}
```
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
Oliver Guhr in collaboration with Ezi Ozoani and the Hugging Face team
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
model = AutoModelForTokenClassification.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
```
</details>