metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
Perry syndrome is a familial parkinsonism associated with central
hypoventilation, mental depression, and weight loss.
sentences:
- List features of the Perry syndrome.
- Which is the main abnormality that arises with Sox9 locus duplication?
- Was modafinil tested for schizophrenia treatment?
- source_sentence: >-
Yes. HDAC1 is required for GATA-1 transcription activity, global chromatin
occupancy and hematopoiesis.
sentences:
- Is HDAC1 required for GATA-1 transcriptional activity?
- Which cells are affected in radiation-induced leukemias?
- Is phospholamban phosphorylated by Protein kinase A?
- source_sentence: >-
Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in
the mammalian genomes, and yet, their functions remain largely unknown. As
part of the FANTOM6 project, the expression of 285 lncRNAs was
systematically knocked down in human dermal fibroblasts. Cellular growth,
morphological changes, and transcriptomic responses were quantified using
Capped Analysis of Gene Expression (CAGE).The functional annotation of the
mammalian genome 6 (FANTOM6) project aims to systematically map all human
long noncoding RNAs (lncRNAs) in a gene-dependent manner through dedicated
efforts from national and international teams
sentences:
- What delivery system is used for the Fluzone Intradermal vaccine?
- What is dovitinib?
- >-
Which class of genomic elements was assessed as part of the FANTOM6
project?
- source_sentence: ' The proband had normal molecular analysis of the glypican 6 gene (GPC6), which was recently reported as a candidate for autosomal recessive omodysplasiaThe proband had normal molecular analysis of the glypican 6 gene (GPC6), which was recently reported as a candidate for autosomal recessive omodysplasiaThe glypican 6 gene (GPC6), which was recently reported as a candidate for autosomal recessive omodysplasia.Omodysplasia is a rare autosomal recessive disorder with a frequency of 1 in 50,000 newborn, and is associated with mutations in the GPC6 gene on chromosome 13.'
sentences:
- >-
What is the effect of ivabradine in heart failure with preserved
ejection fraction?
- >-
What rare disease is associated with a mutation in the GPC6 gene on
chromosome 13?
- What is the effect of rHDL-apoE3 on endothelial cell migration?
- source_sentence: >-
Yes, numerous whole exome sequencing studies of ALzheimer patients have
been conducted.
sentences:
- >-
Is muscle regeneration possible in mdx mice with the use of induced
mesenchymal stem cells?
- Has whole exome sequencing been performed in Alzheimer patients?
- >-
How is connected "isolated Non-compaction cardiomyopathy" with dilated
cardiomyopathy?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8516949152542372
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.940677966101695
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9576271186440678
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.961864406779661
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8516949152542372
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31355932203389825
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19152542372881357
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09618644067796611
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8516949152542372
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.940677966101695
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9576271186440678
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.961864406779661
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9149563623470877
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8990348399246703
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8999167242053622
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8516949152542372
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9449152542372882
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9555084745762712
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9597457627118644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8516949152542372
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3149717514124293
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19110169491525428
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09597457627118645
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8516949152542372
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9449152542372882
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9555084745762712
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9597457627118644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9136223756024043
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8979166666666664
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8990624087448101
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8389830508474576
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.934322033898305
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9470338983050848
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9597457627118644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8389830508474576
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3114406779661017
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.189406779661017
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09597457627118645
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8389830508474576
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.934322033898305
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9470338983050848
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9597457627118644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9053426368336166
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8872721616895344
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8879933659912613
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8241525423728814
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9110169491525424
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9322033898305084
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9470338983050848
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8241525423728814
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30367231638418074
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1864406779661017
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09470338983050848
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8241525423728814
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9110169491525424
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9322033898305084
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9470338983050848
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8905411432220106
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8719422585418346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8732028981082185
name: Cosine Map@100
BGE base BioASQ Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed")
sentences = [
'Yes, numerous whole exome sequencing studies of ALzheimer patients have been conducted.',
'Has whole exome sequencing been performed in Alzheimer patients?',
'How is connected "isolated Non-compaction cardiomyopathy" with dilated cardiomyopathy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8517 |
cosine_accuracy@3 |
0.9407 |
cosine_accuracy@5 |
0.9576 |
cosine_accuracy@10 |
0.9619 |
cosine_precision@1 |
0.8517 |
cosine_precision@3 |
0.3136 |
cosine_precision@5 |
0.1915 |
cosine_precision@10 |
0.0962 |
cosine_recall@1 |
0.8517 |
cosine_recall@3 |
0.9407 |
cosine_recall@5 |
0.9576 |
cosine_recall@10 |
0.9619 |
cosine_ndcg@10 |
0.915 |
cosine_mrr@10 |
0.899 |
cosine_map@100 |
0.8999 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8517 |
cosine_accuracy@3 |
0.9449 |
cosine_accuracy@5 |
0.9555 |
cosine_accuracy@10 |
0.9597 |
cosine_precision@1 |
0.8517 |
cosine_precision@3 |
0.315 |
cosine_precision@5 |
0.1911 |
cosine_precision@10 |
0.096 |
cosine_recall@1 |
0.8517 |
cosine_recall@3 |
0.9449 |
cosine_recall@5 |
0.9555 |
cosine_recall@10 |
0.9597 |
cosine_ndcg@10 |
0.9136 |
cosine_mrr@10 |
0.8979 |
cosine_map@100 |
0.8991 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.839 |
cosine_accuracy@3 |
0.9343 |
cosine_accuracy@5 |
0.947 |
cosine_accuracy@10 |
0.9597 |
cosine_precision@1 |
0.839 |
cosine_precision@3 |
0.3114 |
cosine_precision@5 |
0.1894 |
cosine_precision@10 |
0.096 |
cosine_recall@1 |
0.839 |
cosine_recall@3 |
0.9343 |
cosine_recall@5 |
0.947 |
cosine_recall@10 |
0.9597 |
cosine_ndcg@10 |
0.9053 |
cosine_mrr@10 |
0.8873 |
cosine_map@100 |
0.888 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8242 |
cosine_accuracy@3 |
0.911 |
cosine_accuracy@5 |
0.9322 |
cosine_accuracy@10 |
0.947 |
cosine_precision@1 |
0.8242 |
cosine_precision@3 |
0.3037 |
cosine_precision@5 |
0.1864 |
cosine_precision@10 |
0.0947 |
cosine_recall@1 |
0.8242 |
cosine_recall@3 |
0.911 |
cosine_recall@5 |
0.9322 |
cosine_recall@10 |
0.947 |
cosine_ndcg@10 |
0.8905 |
cosine_mrr@10 |
0.8719 |
cosine_map@100 |
0.8732 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,247 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 4 tokens
- mean: 103.25 tokens
- max: 512 tokens
|
- min: 6 tokens
- mean: 15.94 tokens
- max: 49 tokens
|
- Samples:
positive |
anchor |
Yes, saracatinib is being studied as a treatment against Alzheimer's Disease. A clinical Phase Ib study has been completed, and a clinical Phase IIa study is ongoing. |
Was saracatinib being considered as a treatment for Alzheimer's disease in November 2017? |
TREM2 variants have been found to be associated with early as well as with late onset Alzheimer's disease. |
Is TREM2 associated with Alzheimer's disease in humans? |
Yes, siltuximab , a chimeric human-mouse monoclonal antibody to IL6, is approved for the treatment of patients with multicentric Castleman disease who are human immunodeficiency virus negative and human herpesvirus-8 negative. |
Is siltuximab effective for Castleman disease? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_768_cosine_map@100 |
0.9624 |
8 |
- |
0.8794 |
0.8937 |
0.9044 |
0.9018 |
1.2030 |
10 |
1.1405 |
- |
- |
- |
- |
1.9248 |
16 |
- |
0.8739 |
0.8866 |
0.8998 |
0.8984 |
2.4060 |
20 |
0.4328 |
- |
- |
- |
- |
2.8872 |
24 |
- |
0.8732 |
0.8876 |
0.8987 |
0.8998 |
3.6090 |
30 |
0.312 |
- |
- |
- |
- |
3.8496 |
32 |
- |
0.8732 |
0.8880 |
0.8991 |
0.8999 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}