pavanmantha's picture
Add new SentenceTransformer model.
bc8fc43 verified
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Perry syndrome is a familial parkinsonism associated with central
hypoventilation, mental depression, and weight loss.
sentences:
- List features of the Perry syndrome.
- Which is the main abnormality that arises with Sox9 locus duplication?
- Was modafinil tested for schizophrenia treatment?
- source_sentence: Yes. HDAC1 is required for GATA-1 transcription activity, global
chromatin occupancy and hematopoiesis.
sentences:
- Is HDAC1 required for GATA-1 transcriptional activity?
- Which cells are affected in radiation-induced leukemias?
- Is phospholamban phosphorylated by Protein kinase A?
- source_sentence: Long noncoding RNAs (lncRNAs) constitute the majority of transcripts
in the mammalian genomes, and yet, their functions remain largely unknown. As
part of the FANTOM6 project, the expression of 285 lncRNAs was systematically
knocked down in human dermal fibroblasts. Cellular growth, morphological changes,
and transcriptomic responses were quantified using Capped Analysis of Gene Expression
(CAGE).The functional annotation of the mammalian genome 6 (FANTOM6) project aims
to systematically map all human long noncoding RNAs (lncRNAs) in a gene-dependent
manner through dedicated efforts from national and international teams
sentences:
- What delivery system is used for the Fluzone Intradermal vaccine?
- What is dovitinib?
- Which class of genomic elements was assessed as part of the FANTOM6 project?
- source_sentence: ' The proband had normal molecular analysis of the glypican 6 gene
(GPC6), which was recently reported as a candidate for autosomal recessive omodysplasiaThe
proband had normal molecular analysis of the glypican 6 gene (GPC6), which was
recently reported as a candidate for autosomal recessive omodysplasiaThe glypican
6 gene (GPC6), which was recently reported as a candidate for autosomal recessive
omodysplasia.Omodysplasia is a rare autosomal recessive disorder with a frequency
of 1 in 50,000 newborn, and is associated with mutations in the GPC6 gene on chromosome
13.'
sentences:
- What is the effect of ivabradine in heart failure with preserved ejection fraction?
- What rare disease is associated with a mutation in the GPC6 gene on chromosome
13?
- What is the effect of rHDL-apoE3 on endothelial cell migration?
- source_sentence: Yes, numerous whole exome sequencing studies of ALzheimer patients
have been conducted.
sentences:
- Is muscle regeneration possible in mdx mice with the use of induced mesenchymal
stem cells?
- Has whole exome sequencing been performed in Alzheimer patients?
- How is connected "isolated Non-compaction cardiomyopathy" with dilated cardiomyopathy?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8516949152542372
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.940677966101695
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9576271186440678
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.961864406779661
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8516949152542372
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31355932203389825
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19152542372881357
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09618644067796611
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8516949152542372
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.940677966101695
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9576271186440678
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.961864406779661
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9149563623470877
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8990348399246703
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8999167242053622
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8516949152542372
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9449152542372882
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9555084745762712
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9597457627118644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8516949152542372
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3149717514124293
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19110169491525428
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09597457627118645
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8516949152542372
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9449152542372882
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9555084745762712
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9597457627118644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9136223756024043
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8979166666666664
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8990624087448101
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8389830508474576
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.934322033898305
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9470338983050848
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9597457627118644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8389830508474576
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3114406779661017
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.189406779661017
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09597457627118645
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8389830508474576
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.934322033898305
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9470338983050848
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9597457627118644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9053426368336166
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8872721616895344
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8879933659912613
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8241525423728814
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9110169491525424
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9322033898305084
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9470338983050848
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8241525423728814
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30367231638418074
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1864406779661017
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09470338983050848
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8241525423728814
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9110169491525424
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9322033898305084
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9470338983050848
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8905411432220106
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8719422585418346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8732028981082185
name: Cosine Map@100
---
# BGE base BioASQ Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed")
# Run inference
sentences = [
'Yes, numerous whole exome sequencing studies of ALzheimer patients have been conducted.',
'Has whole exome sequencing been performed in Alzheimer patients?',
'How is connected "isolated Non-compaction cardiomyopathy" with dilated cardiomyopathy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8517 |
| cosine_accuracy@3 | 0.9407 |
| cosine_accuracy@5 | 0.9576 |
| cosine_accuracy@10 | 0.9619 |
| cosine_precision@1 | 0.8517 |
| cosine_precision@3 | 0.3136 |
| cosine_precision@5 | 0.1915 |
| cosine_precision@10 | 0.0962 |
| cosine_recall@1 | 0.8517 |
| cosine_recall@3 | 0.9407 |
| cosine_recall@5 | 0.9576 |
| cosine_recall@10 | 0.9619 |
| cosine_ndcg@10 | 0.915 |
| cosine_mrr@10 | 0.899 |
| **cosine_map@100** | **0.8999** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8517 |
| cosine_accuracy@3 | 0.9449 |
| cosine_accuracy@5 | 0.9555 |
| cosine_accuracy@10 | 0.9597 |
| cosine_precision@1 | 0.8517 |
| cosine_precision@3 | 0.315 |
| cosine_precision@5 | 0.1911 |
| cosine_precision@10 | 0.096 |
| cosine_recall@1 | 0.8517 |
| cosine_recall@3 | 0.9449 |
| cosine_recall@5 | 0.9555 |
| cosine_recall@10 | 0.9597 |
| cosine_ndcg@10 | 0.9136 |
| cosine_mrr@10 | 0.8979 |
| **cosine_map@100** | **0.8991** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.839 |
| cosine_accuracy@3 | 0.9343 |
| cosine_accuracy@5 | 0.947 |
| cosine_accuracy@10 | 0.9597 |
| cosine_precision@1 | 0.839 |
| cosine_precision@3 | 0.3114 |
| cosine_precision@5 | 0.1894 |
| cosine_precision@10 | 0.096 |
| cosine_recall@1 | 0.839 |
| cosine_recall@3 | 0.9343 |
| cosine_recall@5 | 0.947 |
| cosine_recall@10 | 0.9597 |
| cosine_ndcg@10 | 0.9053 |
| cosine_mrr@10 | 0.8873 |
| **cosine_map@100** | **0.888** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8242 |
| cosine_accuracy@3 | 0.911 |
| cosine_accuracy@5 | 0.9322 |
| cosine_accuracy@10 | 0.947 |
| cosine_precision@1 | 0.8242 |
| cosine_precision@3 | 0.3037 |
| cosine_precision@5 | 0.1864 |
| cosine_precision@10 | 0.0947 |
| cosine_recall@1 | 0.8242 |
| cosine_recall@3 | 0.911 |
| cosine_recall@5 | 0.9322 |
| cosine_recall@10 | 0.947 |
| cosine_ndcg@10 | 0.8905 |
| cosine_mrr@10 | 0.8719 |
| **cosine_map@100** | **0.8732** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,247 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 103.25 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.94 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|
| <code>Yes, saracatinib is being studied as a treatment against Alzheimer's Disease. A clinical Phase Ib study has been completed, and a clinical Phase IIa study is ongoing.</code> | <code>Was saracatinib being considered as a treatment for Alzheimer's disease in November 2017?</code> |
| <code>TREM2 variants have been found to be associated with early as well as with late onset Alzheimer's disease.</code> | <code>Is TREM2 associated with Alzheimer's disease in humans?</code> |
| <code>Yes, siltuximab , a chimeric human-mouse monoclonal antibody to IL6, is approved for the treatment of patients with multicentric Castleman disease who are human immunodeficiency virus negative and human herpesvirus-8 negative.</code> | <code>Is siltuximab effective for Castleman disease?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| **0.9624** | **8** | **-** | **0.8794** | **0.8937** | **0.9044** | **0.9018** |
| 1.2030 | 10 | 1.1405 | - | - | - | - |
| 1.9248 | 16 | - | 0.8739 | 0.8866 | 0.8998 | 0.8984 |
| 2.4060 | 20 | 0.4328 | - | - | - | - |
| 2.8872 | 24 | - | 0.8732 | 0.8876 | 0.8987 | 0.8998 |
| 3.6090 | 30 | 0.312 | - | - | - | - |
| 3.8496 | 32 | - | 0.8732 | 0.8880 | 0.8991 | 0.8999 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->