|
--- |
|
license: gpl-3.0 |
|
widget: |
|
- text: 宵凉百念集孤灯,暗雨鸣廊睡未能。生计坐怜秋一叶,归程冥想浪千层。寒心国事浑难料,堆眼官资信可憎。此去梦中应不忘,顺承门内近觚棱。 |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
使用方法如下: |
|
```python |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
import torch |
|
|
|
# 加载已训练的模型和分词器 |
|
model_path = 'qixun/tangsong_poem_classify' |
|
tokenizer = BertTokenizer.from_pretrained(model_path) |
|
model = BertForSequenceClassification.from_pretrained(model_path) |
|
|
|
# 预处理函数 |
|
def preprocess_text(text): |
|
inputs = tokenizer(text, padding='max_length', truncation=True, max_length=128, return_tensors='pt') |
|
return inputs |
|
|
|
# 分类函数 |
|
def classify_text(text): |
|
model.eval() # 切换到评估模式 |
|
inputs = preprocess_text(text) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probabilities = torch.softmax(logits, dim=1) |
|
predicted_label = torch.argmax(probabilities, dim=1).item() |
|
return predicted_label, probabilities |
|
|
|
# 示例文本 |
|
text = "宵凉百念集孤灯,暗雨鸣廊睡未能。生计坐怜秋一叶,归程冥想浪千层。寒心国事浑难料,堆眼官资信可憎。此去梦中应不忘,顺承门内近觚棱。" |
|
|
|
# 调用分类函数 |
|
predicted_label, probabilities = classify_text(text) |
|
|
|
# 输出结果 |
|
print(f"预测标签: {predicted_label}") |
|
print(f"概率分布: {probabilities}") |
|
|
|
``` |
|
|
|
label_0代表唐诗风格 |
|
label_1代表宋诗风格 |