File size: 4,181 Bytes
33ae159 a7c29d5 33ae159 a7c29d5 33ae159 5ffa96c 7114159 a7c29d5 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 33ae159 65cddc8 a7c29d5 2aca745 33ae159 2aca745 33ae159 2aca745 a7c29d5 2aca745 33ae159 2aca745 33ae159 2aca745 33ae159 65cddc8 33ae159 a7c29d5 4de05d3 c83034c 33ae159 a7c29d5 33ae159 a7c29d5 2aca745 8e78730 2aca745 a7c29d5 8e78730 33ae159 a7c29d5 33ae159 a7c29d5 33ae159 a7c29d5 33ae159 a7c29d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: mit
language:
- zh
metrics:
- accuracy
- f1 (macro)
- f1 (micro)
base_model:
- google-bert/bert-base-chinese
pipeline_tag: text-classification
tags:
- Multi-label Text Classification
datasets:
- scfengv/TVL-general-layer-dataset
library_name: adapter-transformers
model-index:
- name: scfengv/TVL_GeneralLayerClassifier
results:
- task:
type: multi-label text-classification
dataset:
name: scfengv/TVL-general-layer-dataset
type: scfengv/TVL-general-layer-dataset
metrics:
- name: Accuracy
type: Accuracy
value: 0.952902
- name: F1 score (Micro)
type: F1 score (Micro)
value: 0.968717
- name: F1 score (Macro)
type: F1 score (Macro)
value: 0.970818
---
# Model Details of TVL_GeneralLayerClassifier
## Base Model
This model is fine-tuned from [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese).
## Model Architecture
- **Type**: BERT-based text classification model
- **Hidden Size**: 768
- **Number of Layers**: 12
- **Number of Attention Heads**: 12
- **Intermediate Size**: 3072
- **Max Sequence Length**: 512
- **Vocabulary Size**: 21,128
## Key Components
1. **Embeddings**
- Word Embeddings
- Position Embeddings
- Token Type Embeddings
- Layer Normalization
2. **Encoder**
- 12 layers of:
- Self-Attention Mechanism
- Intermediate Dense Layer
- Output Dense Layer
- Layer Normalization
3. **Pooler**
- Dense layer for sentence representation
4. **Classifier**
- Output layer with 4 classes
## Training Hyperparameters
The model was trained using the following hyperparameters:
```
Learning rate: 1e-05
Batch size: 32
Number of epochs: 10
Optimizer: Adam
Loss function: torch.nn.BCEWithLogitsLoss()
```
## Training Infrastructure
- **Hardware Type:** NVIDIA Quadro RTX8000
- **Library:** PyTorch
- **Hours used:** 2hr 56mins
## Model Parameters
- Total parameters: ~102M (estimated)
- All parameters are in 32-bit floating point (F32) format
## Input Processing
- Uses BERT tokenization
- Supports sequences up to 512 tokens
## Output
- 4-class multi-label classification
## Performance Metrics
- Accuracy score: 0.952902
- F1 score (Micro): 0.968717
- F1 score (Macro): 0.970818
## Training Dataset
This model was trained on the [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset).
## Testing Dataset
- [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
- validation
- Remove Emoji
- Emoji2Desc
- Remove Punctuation
## Usage
```python
import torch
from transformers import BertForSequenceClassification, BertTokenizer
model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
# Prepare your text
text = "Your text here" ## Please refer to Dataset
inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.sigmoid(outputs.logits)
# Print predictions
print(predictions)
```
## Additional Notes
- This model is specifically designed for TVL general layer classification tasks.
- It's based on the Chinese BERT model, indicating it's optimized for Chinese text.
- **Hardware Type:** NVIDIA Quadro RTX8000
- **Library:** PyTorch
- **Hours used:** 2hr 56mins
### Training Data
- [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
- train
### Training Hyperparameters
The model was trained using the following hyperparameters:
```
Learning rate: 1e-05
Batch size: 32
Number of epochs: 10
Optimizer: Adam
Loss function: torch.nn.BCEWithLogitsLoss()
```
## Evaluation
### Testing Data
- [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
- validation
- Remove Emoji
- Emoji2Desc
- Remove Punctuation
### Results (validation)
- Accuracy: 0.952902
- F1 Score (Micro): 0.968717
- F1 Score (Macro): 0.970818
|