File size: 6,601 Bytes
b978278
 
 
1eff428
 
 
 
 
 
 
 
 
 
b978278
 
 
 
e2f4b59
 
 
 
 
 
 
b978278
 
40ae2db
b978278
d9ca473
b978278
a5cc7ee
15377ab
 
 
a5cc7ee
 
b978278
 
 
 
 
d9ca473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c365b
d9ca473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c365b
d9ca473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b978278
d9ca473
 
b978278
 
 
 
 
 
 
d9ca473
b978278
d9ca473
b978278
 
e2f4b59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
base_model:
- arcee-ai/Virtuoso-Small
- rombodawg/Rombos-LLM-V2.6-Qwen-14b
- sometimesanotion/Qwentinuum-14B-v013
- sometimesanotion/Lamarck-14B-v0.3
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- allura-org/TQ2.5-14B-Sugarquill-v1
- oxyapi/oxy-1-small
- v000000/Qwen2.5-Lumen-14B
- sthenno-com/miscii-14b-1225
- underwoods/medius-erebus-magnum-14b
- huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
language:
- en
metrics:
- accuracy
- code_eval
pipeline_tag: text-generation
---

Vimarckoso is a reasoning-focused part of the [Lamarck](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.4-Qwenvergence) project.  It began with a recipe based on [Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke), and then I set out to boost instruction following without any great loss to reasoning.  The results surpassed my expectations.

As of this writing, with [open-llm-leaderboard](https://huggingface.co/open-llm-leaderboard) catching up on rankings, Vimarckoso v3 should join Arcee AI's  [Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small), Sthenno's [miscii-14b-1225](https://huggingface.co/sthenno-com/miscii-14b-1225) and Cultrix's [Qwen2.5-14B-Brocav3](https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3) at the top of the 14B parameter LLM category on this site.  As the recipe below will show, their models contribute strongly to Virmarckoso - CultriX's through a strong influence on Lamarck v0.3.  Congratulations to everyone whose work went into this!

![Vimarckoso-v3.png](https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3/resolve/main/Vimarckoso-v3.png)

Wernicke and Vimarckoso both inherit very strong reasoning, and hence high GPQA and MUSR scores, from [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2).  Prose quality gets a boost from models blended in [Qwenvergence-14B-v6-Prose](https://huggingface.co/Qwenvergence-14B-v6-Prose), and instruction following gets healed after the merges thanks to LoRAs based on [huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2).

---

### Configuration

The following YAML configuration was used to produce this model:

```yaml
name:                Qwenvergence-14B-v6-Prose-model_stock
merge_method:        model_stock
base_model:          Qwen/Qwen2.5-14B
tokenizer_source:    huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
parameters:
  int8_mask:         true
  normalize:         true
  rescale:           false
models:
  - model:           arcee-ai/Virtuoso-Small
  - model:           sometimesanotion/Lamarck-14B-v0.3
  - model:           EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
  - model:           allura-org/TQ2.5-14B-Sugarquill-v1
  - model:           oxyapi/oxy-1-small
  - model:           v000000/Qwen2.5-Lumen-14B
  - model:           sthenno-com/miscii-14b-1225
  - model:           sthenno-com/miscii-14b-1225
  - model:           underwoods/medius-erebus-magnum-14b
  - model:           huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
dtype:               float32
out_dtype:           bfloat16
---
# Nifty TIES to allow a series of LoRA exchange among the above models
---
name:                Qwenvergence-14B-v6-Prose
merge_method:        ties
base_model:          Qwen/Qwen2.5-14B
tokenizer_source:    base
parameters:         
  density:           1.00
  weight:            1.00
  int8_mask:         true
  normalize:         true
  rescale:           false
dtype:               float32
out_dtype:           bfloat16
models:
  - model:           sometimesanotion/Qwenvergence-14B-v6-Prose-slerp
    parameters:
      density:       1.00
      weight:        1.00

---
# The last stable version of the Qwentinuum project which used successive breadcrumbs and SLERP merges to boost IFEval, merged back into Qwenvergence 
name:                Qwentinuum-14B-v6-Prose-slerp
merge_method:        slerp
base_model:          sometimesanotion/Qwenvergence-14B-v6-Prose
tokenizer_source:    sometimesanotion/Qwenvergence-14B-v6-Prose
dtype:               bfloat16
out_dtype:           bfloat16
parameters:         
  int8_mask:         true
  normalize:         true
  rescale:           false
parameters:
  t:
    - value:         0.40
slices:
  - sources:
      - model:       sometimesanotion/Qwenvergence-14B-v6-Prose
        layer_range: [ 0, 8 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6
        layer_range: [ 0, 8 ]
  - sources:
      - model:       sometimesanotion/Qwenvergence-14B-v6-Prose
        layer_range: [ 8, 16 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6
        layer_range: [ 8, 16 ]
  - sources:
      - model:       sometimesanotion/Qwenvergence-14B-v6-Prose
        layer_range: [ 16, 24 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6
        layer_range: [ 16, 24 ]
  - sources:
      - model:       sometimesanotion/Qwenvergence-14B-v6-Prose
        layer_range: [ 24, 32 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6
        layer_range: [ 24, 32 ]
  - sources:
      - model:       sometimesanotion/Qwenvergence-14B-v6-Prose
        layer_range: [ 32, 40 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6
        layer_range: [ 32, 40 ]
  - sources:
      - model:       sometimesanotion/Qwenvergence-14B-v6-Prose
        layer_range: [ 40, 48 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6
        layer_range: [ 40, 48 ]

---
name:                Qwen2.5-14B-Vimarckoso-v3-slerp
merge_method:        slerp
base_model:          sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
tokenizer_source:    base
dtype:               float32
out_dtype:           bfloat16
parameters:
  t:
    - value:         0.20
slices:
  - sources:
      - model:       sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
        layer_range: [ 0, 48 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6-Prose+sometimesanotion/Qwenvergence-Abliterate-256
        layer_range: [ 0, 48 ]
---
name:                Qwen2.5-14B-Vimarckoso-v3-slerp
merge_method:        slerp
base_model:          sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
tokenizer_source:    base
dtype:               float32
out_dtype:           bfloat16
parameters:
  t:
    - value:         0.20
slices:
  - sources:
      - model:       sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
        layer_range: [ 0, 48 ]
      - model:       sometimesanotion/Qwentinuum-14B-v6-Prose+sometimesanotion/Qwenvergence-Abliterate-256
        layer_range: [ 0, 48 ]

```