File size: 11,572 Bytes
7b04d4e
 
 
 
 
49a323c
7b04d4e
33fd6ad
75c2b7c
33fd6ad
771e08a
 
519704e
771e08a
 
 
 
 
 
519704e
771e08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cd948
519704e
 
771e08a
 
 
 
 
 
 
 
 
 
519704e
771e08a
519704e
 
 
 
 
 
 
771e08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3406b
519704e
 
 
 
 
 
 
 
 
 
 
 
46e12d1
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda20be
519704e
 
46e12d1
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf83e0
519704e
 
 
 
 
 
9bf83e0
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46e12d1
771e08a
1cddd79
 
 
7e6153d
7b04d4e
1cddd79
b4f3ea6
46e12d1
1cddd79
18cd948
7b04d4e
b4f3ea6
b6ce847
49a323c
27eab0f
 
 
 
9fd1d46
27eab0f
33fd6ad
b4f3ea6
 
 
 
1cddd79
7b04d4e
bda20be
 
46e12d1
771e08a
 
bda20be
 
1cddd79
 
771e08a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64

class SafetyMonitor:
    def __init__(self):
        """Initialize Safety Monitor with configuration."""
        self.client = Groq()
        self.model_name = "llama-3.2-90b-vision-preview"
        self.max_image_size = (800, 800)
        self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]

    def preprocess_image(self, frame):
        """Process image for analysis."""
        if len(frame.shape) == 2:
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        elif len(frame.shape) == 3 and frame.shape[2] == 4:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
        
        return self.resize_image(frame)

    def resize_image(self, image):
        """Resize image while maintaining aspect ratio."""
        height, width = image.shape[:2]
        if height > self.max_image_size[1] or width > self.max_image_size[0]:
            aspect = width / height
            if width > height:
                new_width = self.max_image_size[0]
                new_height = int(new_width / aspect)
            else:
                new_height = self.max_image_size[1]
                new_width = int(new_height * aspect)
            return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
        return image

    def encode_image(self, frame):
        """Convert image to base64 encoding."""
        frame_pil = PILImage.fromarray(frame)
        buffered = io.BytesIO()
        frame_pil.save(buffered, format="JPEG", quality=95)
        img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
        return f"data:image/jpeg;base64,{img_base64}"

    def get_scene_context(self, image):
        """Analyze the scene context."""
        try:
            image_url = self.encode_image(image)
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": """Analyze this workplace image and identify key areas and elements. Include:
                                1. Worker locations and activities
                                2. Equipment and machinery
                                3. Materials and storage
                                4. Access routes and paths
                                5. Hazardous areas
                                
                                Format each observation as:
                                - Element: specific location in image"""
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_url
                                }
                            }
                        ]
                    }
                ],
                temperature=0.3,
                max_tokens=200,
                stream=False
            )
            return completion.choices[0].message.content
        except Exception as e:
            print(f"Scene analysis error: {str(e)}")
            return ""

    def analyze_frame(self, frame):
        """Perform safety analysis on the frame."""
        if frame is None:
            return "No frame received", {}

        frame = self.preprocess_image(frame)
        image_url = self.encode_image(frame)
        
        try:
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": """Analyze this image for safety hazards. For each hazard:
                                1. Specify the precise location in the image
                                2. Describe the safety concern or violation
                                3. Indicate the potential risk

                                Format each finding as:
                                - <location>position:detailed safety concern</location>

                                Look for all types of safety issues:
                                - PPE compliance
                                - Ergonomic risks
                                - Equipment safety
                                - Environmental hazards
                                - Material handling
                                - Work procedures
                                - Access and egress
                                - Housekeeping"""
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_url
                                }
                            }
                        ]
                    }
                ],
                temperature=0.5,
                max_tokens=500,
                stream=False
            )
            return completion.choices[0].message.content, {}
        except Exception as e:
            print(f"Analysis error: {str(e)}")
            return f"Analysis Error: {str(e)}", {}

    def get_region_coordinates(self, position, image_shape):
        """Convert textual position to coordinates."""
        height, width = image_shape[:2]
        
        # Parse position for spatial information
        position = position.lower()
        
        # Base coordinates (full image)
        x1, y1, x2, y2 = 0, 0, width, height
        
        # Define regions
        regions = {
            'center': (width//3, height//3, 2*width//3, 2*height//3),
            'top': (width//3, 0, 2*width//3, height//3),
            'bottom': (width//3, 2*height//3, 2*width//3, height),
            'left': (0, height//3, width//3, 2*height//3),
            'right': (2*width//3, height//3, width, 2*height//3),
            'top-left': (0, 0, width//3, height//3),
            'top-right': (2*width//3, 0, width, height//3),
            'bottom-left': (0, 2*height//3, width//3, height),
            'bottom-right': (2*width//3, 2*height//3, width, height),
            'upper': (0, 0, width, height//2),
            'lower': (0, height//2, width, height),
            'middle': (0, height//3, width, 2*height//3)
        }
        
        # Find best matching region
        best_match = None
        max_match = 0
        for region, coords in regions.items():
            if region in position:
                words = region.split('-')
                matches = sum(1 for word in words if word in position)
                if matches > max_match:
                    max_match = matches
                    best_match = coords
        
        return best_match if best_match else (x1, y1, x2, y2)

    def draw_observations(self, image, observations):
        """Draw bounding boxes and labels for safety observations."""
        height, width = image.shape[:2]
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 0.5
        thickness = 2
        padding = 10

        for idx, obs in enumerate(observations):
            color = self.colors[idx % len(self.colors)]
            
            # Get coordinates for this observation
            x1, y1, x2, y2 = self.get_region_coordinates(obs['location'], image.shape)
            
            # Draw rectangle
            cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
            
            # Add label with background
            label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
            label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
            
            # Position text above the box
            text_x = max(0, x1)
            text_y = max(label_size[1] + padding, y1 - padding)
            
            # Draw text background
            cv2.rectangle(image, 
                         (text_x, text_y - label_size[1] - padding),
                         (text_x + label_size[0] + padding, text_y),
                         color, -1)
            
            # Draw text
            cv2.putText(image, label,
                       (text_x + padding//2, text_y - padding//2),
                       font, font_scale, (255, 255, 255), thickness)
        
        return image

    def process_frame(self, frame):
        """Main processing pipeline for safety analysis."""
        if frame is None:
            return None, "No image provided"
        
        try:
            # Get analysis
            analysis, _ = self.analyze_frame(frame)
            display_frame = frame.copy()
            
            # Parse observations
            observations = []
            for line in analysis.split('\n'):
                line = line.strip()
                if line.startswith('-') and '<location>' in line and '</location>' in line:
                    start = line.find('<location>') + len('<location>')
                    end = line.find('</location>')
                    location_description = line[start:end].strip()
                    
                    if ':' in location_description:
                        location, description = location_description.split(':', 1)
                        observations.append({
                            'location': location.strip(),
                            'description': description.strip()
                        })
            
            # Draw observations
            if observations:
                annotated_frame = self.draw_observations(display_frame, observations)
                return annotated_frame, analysis
            
            return display_frame, analysis
            
        except Exception as e:
            print(f"Processing error: {str(e)}")
            return None, f"Error processing image: {str(e)}"

def create_monitor_interface():
    monitor = SafetyMonitor()
    
    with gr.Blocks() as demo:
        gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
        
        with gr.Row():
            input_image = gr.Image(label="Upload Image")
            output_image = gr.Image(label="Safety Analysis")
        
        analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
            
        def analyze_image(image):
            if image is None:
                return None, "No image provided"
            try:
                processed_frame, analysis = monitor.process_frame(image)
                return processed_frame, analysis
            except Exception as e:
                print(f"Processing error: {str(e)}")
                return None, f"Error processing image: {str(e)}"
            
        input_image.change(
            fn=analyze_image,
            inputs=input_image,
            outputs=[output_image, analysis_text]
        )

        gr.Markdown("""
        ## Instructions:
        1. Upload any workplace/safety-related image
        2. View identified hazards and their locations
        3. Read detailed analysis of safety concerns
        """)

    return demo

if __name__ == "__main__":
    demo = create_monitor_interface()
    demo.launch()