File size: 12,051 Bytes
eac6bfb 6660e8c eac6bfb f5a37da eac6bfb 15a2bb8 eac6bfb 15a2bb8 eac6bfb 15a2bb8 f5a37da eac6bfb 0788e60 e80a6ea 0788e60 eac6bfb f5a37da 0788e60 f5a37da 0788e60 eac6bfb 15a2bb8 0788e60 eac6bfb 15a2bb8 0788e60 eac6bfb 15a2bb8 eac6bfb 0788e60 eac6bfb 15a2bb8 eac6bfb 778ff50 eac6bfb e80a6ea eac6bfb 881af71 eac6bfb f5a37da 881af71 6660e8c 881af71 6660e8c 881af71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# interface.py
from models import BioprocessModel
import io
from PIL import Image
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from sympy import symbols, sympify, lambdify
import copy
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
from decorators import spaces
# Configuración del dispositivo
device = DEVICE
# Cargar el modelo
model_path = MODEL_PATH # Reemplaza con la ruta real de tu modelo
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# No movemos el modelo al dispositivo aquí
from decorators import spaces
@spaces.GPU(duration=100)
def generate_analysis(prompt, max_length=1024, device=None):
try:
if device is None:
device = torch.device('cpu')
# Mover el modelo al dispositivo adecuado (GPU o CPU)
if next(model.parameters()).device != device:
model.to(device)
# Preparar los datos de entrada en el dispositivo correcto
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
# Generar el texto
generated_ids = model.generate(
input_ids=input_ids,
max_length=max_gen_length,
temperature=0.7,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True
)
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
analysis = output_text[len(prompt):].strip()
return analysis
except RuntimeError as e:
return f"Error durante la ejecución: {str(e)}"
except Exception as e:
return f"Ocurrió un error durante el análisis: {e}"
@spaces.GPU(duration=100)
def parse_bounds(bounds_str, num_params):
try:
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except:
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
@spaces.GPU(duration=100)
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count
):
# Verificar que las columnas requeridas estén presentes en el archivo Excel
df = pd.read_excel(file.name)
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] # Nombres en español
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignación de datos desde las columnas en español
time = df['Tiempo'].values # Columna de tiempo
biomass_data = df['Biomasa'].values # Columna de biomasa
substrate_data = df['Sustrato'].values # Columna de sustrato
product_data = df['Producto'].values # Columna de producto
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, parámetros y límites según los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
model = BioprocessModel()
model.set_model('biomass', equation, params_str)
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'model': copy.deepcopy(model),
'y_pred': y_pred,
'equation': equation
})
# Usa el primer modelo de biomasa para X(t)
biomass_model = biomass_results[0]['model']
X_t_func = biomass_model.models['biomass']['function']
biomass_params_values = list(biomass_model.params['biomass'].values())
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
model = BioprocessModel()
t_symbol = symbols('t')
expr_substrate = sympify(equation)
substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
substrate_func_expr = expr_substrate.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
substrate_func = lambdify(
(t_symbol, *substrate_params_symbols),
substrate_func_expr,
'numpy'
)
model.models['substrate'] = {
'function': substrate_func,
'params': [param.strip() for param in params_str.split(',')]
}
params = model.models['substrate']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'model': copy.deepcopy(model),
'y_pred': y_pred,
'equation': equation
})
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
model = BioprocessModel()
t_symbol = symbols('t')
expr_product = sympify(equation)
product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
product_func_expr = expr_product.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
product_func = lambdify(
(t_symbol, *product_params_symbols),
product_func_expr,
'numpy'
)
model.models['product'] = {
'function': product_func,
'params': [param.strip() for param in params_str.split(',')]
}
params = model.models['product']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'model': copy.deepcopy(model),
'y_pred': y_pred,
'equation': equation
})
# Genera las gráficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gráfica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gráfica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gráfica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
all_results = {
'biomass_models': [],
'substrate_models': [],
'product_models': []
}
for i, result in enumerate(biomass_results):
model_info = {
'model_number': i + 1,
'equation': result['equation'],
'parameters': result['model'].params['biomass'],
'R2': result['model'].r2['biomass'],
'RMSE': result['model'].rmse['biomass']
}
all_results['biomass_models'].append(model_info)
for i, result in enumerate(substrate_results):
model_info = {
'model_number': i + 1,
'equation': result['equation'],
'parameters': result['model'].params['substrate'],
'R2': result['model'].r2['substrate'],
'RMSE': result['model'].rmse['substrate']
}
all_results['substrate_models'].append(model_info)
for i, result in enumerate(product_results):
model_info = {
'model_number': i + 1,
'equation': result['equation'],
'parameters': result['model'].params['product'],
'R2': result['model'].r2['product'],
'RMSE': result['model'].rmse['product']
}
all_results['product_models'].append(model_info)
results_text = "Resultados Experimentales:\n\n"
results_text += "Modelos de Biomasa:\n"
for model_info in all_results['biomass_models']:
results_text += f"""
Modelo {model_info['model_number']}:
Ecuación: {model_info['equation']}
Parámetros: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""
results_text += "\nModelos de Sustrato:\n"
for model_info in all_results['substrate_models']:
results_text += f"""
Modelo {model_info['model_number']}:
Ecuación: {model_info['equation']}
Parámetros: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""
results_text += "\nModelos de Producto:\n"
for model_info in all_results['product_models']:
results_text += f"""
Modelo {model_info['model_number']}:
Ecuación: {model_info['equation']}
Parámetros: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""
prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
{results_text}
Tu análisis debe ser detallado y profesional.
"""
analysis = generate_analysis(prompt)
return [image], analysis
|