File size: 7,656 Bytes
d3b387e
4a4fa9d
d29c5c7
 
737ac7d
00cde65
 
 
29053b7
d29c5c7
 
9f0a758
d29c5c7
737ac7d
 
5d0d515
7298d71
 
 
737ac7d
8bb37ad
d29c5c7
 
63f3c1a
d29c5c7
 
29053b7
 
 
 
 
d29c5c7
8bb37ad
d29c5c7
 
 
00cde65
fe1044b
 
 
 
 
 
 
 
 
 
 
 
ae7c4ce
d29c5c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29053b7
d29c5c7
 
 
 
 
 
 
 
 
00cde65
7298d71
fe1044b
 
 
 
 
00cde65
 
 
 
 
 
 
 
 
 
 
 
 
 
4a4fa9d
d29c5c7
29053b7
4a4fa9d
00cde65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a4fa9d
00cde65
 
 
 
 
 
 
 
 
 
4a4fa9d
 
 
00cde65
4a4fa9d
 
00cde65
 
 
 
4a4fa9d
00cde65
4a4fa9d
00cde65
 
 
 
 
 
 
4a4fa9d
00cde65
4a4fa9d
00cde65
4a4fa9d
00cde65
4a4fa9d
00cde65
 
 
 
 
 
 
4a4fa9d
00cde65
4a4fa9d
00cde65
4a4fa9d
00cde65
 
 
 
 
 
 
4a4fa9d
00cde65
 
 
 
 
 
 
4a4fa9d
 
 
00cde65
 
 
 
 
 
 
4a4fa9d
00cde65
 
 
 
 
 
 
4a4fa9d
00cde65
 
 
 
 
 
4a4fa9d
 
00cde65
 
 
 
 
4a4fa9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import sentencepiece
import torch
import spaces
import gradio as gr
import os
from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import (
    FluxControlNetInpaintPipeline,
)
from diffusers.pipelines.flux.pipeline_flux_inpaint import FluxInpaintPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
from controlnet_aux import CannyDetector
import psutil

# login hf token
HF_TOKEN = os.getenv("HF_TOKEN")
# print(HF_TOKEN)
# from huggingface_hub import login
#
# login()

dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"

base_model = "black-forest-labs/FLUX.1-dev"
controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"

# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
# pipe = FluxControlNetInpaintPipeline.from_pretrained(
#     base_model, controlnet=controlnet, torch_dtype=dtype
# ).to(device)
pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

pipe.enable_model_cpu_offload()

canny = CannyDetector()


def get_system_memory():
    memory = psutil.virtual_memory()
    memory_percent = memory.percent
    memory_used = memory.used / (1024.0**3)
    memory_total = memory.total / (1024.0**3)
    return {
        "percent": f"{memory_percent}%",
        "used": f"{memory_used:.3f}GB",
        "total": f"{memory_total:.3f}GB",
    }


@spaces.GPU(duration=160)
def inpaint(
    image,
    mask,
    prompt,
    strength,
    num_inference_steps,
    guidance_scale,
    controlnet_conditioning_scale,
):
    canny_image = canny(image)

    image_res = pipe(
        prompt,
        image=image,
        control_image=canny_image,
        # controlnet_conditioning_scale=controlnet_conditioning_scale,
        mask_image=mask,
        strength=strength,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
    ).images[0]

    return image_res


with gr.Blocks() as demo:
    # gr.LoginButton()
    with gr.Row():
        with gr.Column():
            gr.Textbox(value="Hello Memory")
        with gr.Column():
            gr.JSON(get_system_memory, every=1)
    gr.Interface(
        fn=inpaint,
        inputs=[
            gr.Image(type="pil", label="Input Image"),
            gr.Image(type="pil", label="Mask Image"),
            gr.Textbox(label="Prompt"),
            gr.Slider(0, 1, value=0.95, label="Strength"),
            gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
            gr.Slider(0, 20, value=5, label="Guidance Scale"),
            gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
        ],
        outputs=gr.Image(type="pil", label="Output Image"),
        title="Flux Inpaint AI Model",
        description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
    )

demo.launch(debug=True)

# import gradio as gr
# import numpy as np
# import random
# # import spaces
# import torch
# from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
# from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
# # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
#
# dtype = torch.bfloat16
# device = "cuda" if torch.cuda.is_available() else "cpu"
#
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
# torch.cuda.empty_cache()
#
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 2048
#
# # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
#
# # @spaces.GPU(duration=75)
# def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
#     if randomize_seed:
#         seed = random.randint(0, MAX_SEED)
#     generator = torch.Generator().manual_seed(seed)
#
#     for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
#             prompt=prompt,
#             guidance_scale=guidance_scale,
#             num_inference_steps=num_inference_steps,
#             width=width,
#             height=height,
#             generator=generator,
#             output_type="pil",
#             good_vae=good_vae,
#         ):
#             yield img, seed
#
# examples = [
#     "a tiny astronaut hatching from an egg on the moon",
#     "a cat holding a sign that says hello world",
#     "an anime illustration of a wiener schnitzel",
# ]
#
# css="""
# #col-container {
#     margin: 0 auto;
#     max-width: 520px;
# }
# """
#
# with gr.Blocks(css=css) as demo:
#
#     with gr.Column(elem_id="col-container"):
#         gr.Markdown(f"""# FLUX.1 [dev]
# 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
# [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
#         """)
#
#         with gr.Row():
#
#             prompt = gr.Text(
#                 label="Prompt",
#                 show_label=False,
#                 max_lines=1,
#                 placeholder="Enter your prompt",
#                 container=False,
#             )
#
#             run_button = gr.Button("Run", scale=0)
#
#         result = gr.Image(label="Result", show_label=False)
#
#         with gr.Accordion("Advanced Settings", open=False):
#
#             seed = gr.Slider(
#                 label="Seed",
#                 minimum=0,
#                 maximum=MAX_SEED,
#                 step=1,
#                 value=0,
#             )
#
#             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
#
#             with gr.Row():
#
#                 width = gr.Slider(
#                     label="Width",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=1024,
#                 )
#
#                 height = gr.Slider(
#                     label="Height",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=1024,
#                 )
#
#             with gr.Row():
#
#                 guidance_scale = gr.Slider(
#                     label="Guidance Scale",
#                     minimum=1,
#                     maximum=15,
#                     step=0.1,
#                     value=3.5,
#                 )
#
#                 num_inference_steps = gr.Slider(
#                     label="Number of inference steps",
#                     minimum=1,
#                     maximum=50,
#                     step=1,
#                     value=28,
#                 )
#
#         gr.Examples(
#             examples = examples,
#             fn = infer,
#             inputs = [prompt],
#             outputs = [result, seed],
#             cache_examples="lazy"
#         )
#
#     gr.on(
#         triggers=[run_button.click, prompt.submit],
#         fn = infer,
#         inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
#         outputs = [result, seed]
#     )
#
# demo.launch()