File size: 31,686 Bytes
0fe789b
 
 
 
d596827
 
c0a7361
bab4c4c
 
 
 
2757a96
826ee89
bab4c4c
826ee89
 
bab4c4c
 
 
 
 
 
a022aa4
bab4c4c
 
a022aa4
bab4c4c
 
 
 
 
a022aa4
bab4c4c
 
826ee89
 
0fe789b
48c73a3
 
 
 
 
 
 
 
 
 
 
 
826ee89
 
 
 
 
 
 
 
e780392
826ee89
 
a022aa4
826ee89
 
 
 
 
 
 
 
 
48c73a3
826ee89
 
 
 
 
 
 
 
 
 
 
 
 
48c73a3
ac8e759
616187f
 
0fe789b
 
ac8e759
 
 
0fe789b
0f6e724
 
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a022aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe789b
826ee89
017f18e
 
 
 
2ed61d1
 
 
 
 
a022aa4
017f18e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe789b
2e6f463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe789b
 
 
 
caa8f95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a022aa4
 
caa8f95
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa8f95
 
0fe789b
 
 
caa8f95
 
 
a022aa4
 
caa8f95
 
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616187f
0fe789b
 
a022aa4
2e6f463
0fe789b
616187f
 
 
 
2e6f463
017f18e
2e6f463
017f18e
0fe789b
017f18e
 
a022aa4
017f18e
2e6f463
017f18e
 
 
 
2e6f463
a022aa4
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c73a3
 
 
0fe789b
 
 
 
 
 
 
69e8b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6f463
 
69e8b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ef88d
0fe789b
 
 
 
020523a
0fe789b
 
 
 
 
 
 
 
 
 
c0a0449
 
 
 
 
 
 
 
 
 
 
f51d181
 
0fe789b
 
 
 
 
 
 
af1328d
69e8b29
f51d181
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
f51d181
4a8672e
 
 
 
 
 
 
 
 
 
0fe789b
 
ef81693
 
 
0fe789b
ef81693
 
 
0fe789b
 
 
ef81693
0fe789b
ef81693
 
e9e35c7
ef81693
0fe789b
ef81693
 
e9e35c7
ef81693
0fe789b
 
 
 
 
 
d970f82
 
 
 
 
 
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4b737
69e8b29
f51d181
0fe789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8672e
 
 
 
0fe789b
 
 
4a8672e
0fe789b
 
 
 
 
 
 
 
bf45ced
0fe789b
bf45ced
 
 
 
 
 
 
 
0fe789b
 
bf45ced
0fe789b
 
 
 
 
 
826ee89
 
 
 
 
0fe789b
 
 
d970f82
 
0fe789b
 
 
bab4c4c
d970f82
26895a4
bab4c4c
 
0fe789b
826ee89
0fe789b
 
 
 
 
 
25af31d
7ce7c01
616187f
69e8b29
 
 
 
 
 
 
 
0fe789b
 
d41871c
bab4c4c
48c73a3
d41871c
 
 
69e8b29
0fe789b
 
 
 
58f8ff8
616187f
5d97b70
129d735
0fe789b
 
bab4c4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# importando bibliotecas necessárias
import pandas as pd
import numpy as np
import gradio as gr
from gradio import components
from gradio import Interface
import xlsxwriter
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph
from reportlab.lib.styles import getSampleStyleSheet
import shutil
import os
import plotly.express as px

        #-----------------#
    
# Function to save results in a PDF file
def save_results_to_pdf(results_formatados, intervalo_confiança, valores_finais):
    doc = SimpleDocTemplate("resultados.pdf", pagesize=letter)
    styles = getSampleStyleSheet()
    
    # Create a list of elements to include in the PDF
    elements = []   
    # Add the formatted results to the PDF
    formatted_results = Paragraph(results_formatados, styles["Normal"])
    elements.append(formatted_results)    
    # Add the intervalo de confianca to the PDF
    confianca = Paragraph(intervalo_confiança, styles["Normal"])
    elements.append(confianca)
    # Add the valores calculados to the PDF
    calculados = Paragraph(valores_finais, styles["Normal"])
    elements.append(calculados)  
    # Build the PDF
    doc.build(elements)
    
        #-----------------#

def renderizar_dataframe(df):
    try:
        # Renderize o DataFrame como uma tabela HTML com rolagem horizontal
        df_html = df.to_html(classes='table table-striped', 
                            table_id='planilha', 
                            escape=False)  # Não escapar caracteres especiais
        # Use uma div com estilo CSS para permitir a rolagem horizontal
        tabela_com_rolagem = f'<div style="overflow-x:auto;">{df_html}</div>'
        # Retorna a tabela com rolagem como HTML
        return tabela_com_rolagem
    except Exception as e:
        return f"Erro ao processar o DataFrame: {str(e)}"
    
        #-----------------#
    
def plotar_mapa_com_dois_dataframes(df1, df2):
    fig1 = px.scatter_mapbox(
        df1,
        lat='lat',
        lon='lon',
        zoom=12.5,
        center={"lat": df1['lat'].mean(), "lon": df1['lon'].mean()},
        color_discrete_sequence=['#008B8B'],
    )  
    fig1.update_traces(marker=dict(size=10))  # Define o tamanho dos marcadores para o DataFrame 1

    fig2 = px.scatter_mapbox(
        df2,
        lat='lat',
        lon='lon',
        color_discrete_sequence=['orange'],
    )
    fig2.update_traces(marker=dict(size=20))  # Define o tamanho dos marcadores para o DataFrame 2

    # Combine as duas figuras em uma única figura
    for data in fig2.data:
        fig1.add_trace(data)
    # Personalize o layout do mapa, se desejar
    fig1.update_layout(
        mapbox_style="carto-positron",
    )
    # Mostrar o mapa
    fig1.show()

    return fig1

        #-----------------#

# Função de avaliação do imóvel
def avaliacao_imovel(planilha, num_linhas_desejadas=10, finalidade='Defina o tipo de imovel',
                     caract_avaliando='Defina o item 1 de Fundamentação', ident_dados='Defina o item 3 de Fundamentação'):
    # Lendo a aba 'avaliando' da planilha
    df_avaliando = pd.read_excel(planilha.name, 'avaliando')
    
    # Lendo a aba 'dados' da planilha, limitando o número de linhas
    df_dados = pd.read_excel(planilha.name, 'dados').iloc[:int(num_linhas_desejadas)]

        #-----------------#
    
    # fator de atratividade local (fal)
    df_transp = df_dados.copy()
    df_transp = df_transp[['Atratividade local']]
    df_transp['fal'] = round(df_avaliando['Atratividade local'][0] / df_transp['Atratividade local'], 2)
    df_transp = df_transp[['fal']]

        #-----------------#

    # fator de correção da área construída (fac)
    df_area_const = df_dados.copy()
    df_area_const = df_area_const[['Área Construída']]
    df_area_const['razao'] = (df_area_const['Área Construída'] / df_avaliando['Área Construída'][0])
    df_area_const['dif'] = abs(df_area_const['Área Construída'] - df_avaliando['Área Construída'][0])
    # 30% da área do terreno do avaliando
    x_ac = 0.3 * df_avaliando['Área Construída'][0]
    # coeficiente n conforme a diferença entre a área do avaliando e dos dados
    df_area_const['n'] = df_area_const['dif'].apply(lambda dif: 0.250 if dif <= x_ac else 0.125)
    df_area_const['fac'] = round((df_area_const['razao']) ** (df_area_const['n']), 2)
    df_area_const = df_area_const[['fac']]

        #-----------------#

    # fator de correção da área do terreno (fat)
    df_area_terreno = df_dados.copy()
    df_area_terreno = df_area_terreno[['Área Terreno']]
    df_area_terreno['razao'] = (df_area_terreno['Área Terreno'] / df_avaliando['Área Terreno'][0])
    df_area_terreno['dif'] = abs(df_area_terreno['Área Terreno'] - df_avaliando['Área Terreno'][0])
    # 30% da área do terreno do avaliando
    x_at = 0.3 * df_avaliando['Área Terreno'][0]
    # coeficiente n conforme a diferença entre a área do avaliando e dos dados
    df_area_terreno['n'] = df_area_terreno['dif'].apply(lambda dif: 0.250 if dif <= x_at else 0.125)
    df_area_terreno['fat'] = round((df_area_terreno['razao']) ** (df_area_terreno['n']), 2)
    df_area_terreno = df_area_terreno[['fat']]
    
         #-----------------#
    
    # fator profundidade (fpe)
    # Defina a função coeficiente_profundidade antes de criar os DataFrames
    def coeficiente_profundidade(row):
        A = row['Área Terreno']
        t = row['Testada']

        pe = round(A/t, 2)
        hipotese_1 = A > 5000 and pe > 90
        hipotese_2 = A <= 5000 or (A > 5000 and pe <= 90)

        if hipotese_1:
            coef_pe = round(4.8 * (t ** 0.2) * (A ** -0.4), 3)
        else:
            if pe < 20:
                coef_pe = round((pe/20) ** 0.5, 3)
            elif 20 <= pe < 33:
                coef_pe = 1
            elif 33 <= pe < 90:
                coef_pe = round((33/pe) ** 0.5, 3)
            else:
                coef_pe = 0.6

        return coef_pe

    # Crie os DataFrames df_profundidade e df_profundidade_aval
    df_profundidade = df_dados[['Área Terreno','Testada']].copy()
    df_profundidade['coef_pe'] = df_profundidade.apply(coeficiente_profundidade, axis=1)

    # Crie o DataFrame df_profundidade_aval da mesma maneira, se necessário
    df_profundidade_aval = df_avaliando[['Área Terreno','Testada']].copy()
    df_profundidade_aval['coef_pe'] = df_profundidade_aval.apply(coeficiente_profundidade, axis=1)

    df_profundidade['fpe'] = round(df_profundidade_aval['coef_pe'][0]/df_profundidade['coef_pe'],2)
    df_profundidade = df_profundidade[['fpe']]

        #-----------------#
    
    # fator topografia (ftp)
    # dicionário topografia
    dict_topo = {
        'plano <5%': 1,
        'aclive_leve 5% e 30%': 0.95,
        'declive_leve 5% e 30%': 0.90,
        'aclive_acentuado >30%': 0.85,
        'declive_acentuado >30%': 0.80,
        'não se aplica' : 1,
    }

    # cria dataframe apenas com as colunas necessárias a partir do dataframe dos dados
    df_topografia = df_dados.copy()
    df_topografia = df_topografia[['Topografia']]

    # cria dataframe apenas com as colunas necessárias a partir do dataframe do avaliando
    df_topografia_aval = df_avaliando.copy()
    df_topografia_aval = df_topografia_aval[['Topografia']]

    # Função para mapear os valores de Topografia para cod_topo usando o dicionário
    def mapear_cod_topo(topografia):
        return dict_topo.get(topografia, 0)  # 0 como valor padrão caso a topografia não esteja no dicionário
    # Aplicando a função para criar a coluna cod_topo em df_dados e df_avaliando
    df_topografia['coef_tp'] = df_topografia['Topografia'].apply(mapear_cod_topo)
    df_topografia_aval['coef_tp'] = df_topografia_aval['Topografia'].apply(mapear_cod_topo)
    df_topografia['ftp'] = round(df_topografia_aval['coef_tp'][0]/df_topografia['coef_tp'],2)
    df_topografia = df_topografia[['ftp']] 
    
        #-----------------#
    
    # fator superfície (fsp)
    # dicionário topografia
    dict_sup = {
        'plana' : 1.1,
        'ondulada': 1.00,
        'montanhosa/acidentada': 0.80,
        'não se aplica' : 1.00,
    } 

    # cria dataframe apenas com as colunas necessárias a partir do dataframe dos dados
    df_superficie = df_dados.copy()
    df_superficie = df_superficie[['Superfície']]

    # cria dataframe apenas com as colunas necessárias a partir do dataframe do avaliando
    df_superficie_aval = df_avaliando.copy()
    df_superficie_aval = df_superficie_aval[['Superfície']]

    # Função para mapear os valores de Topografia para cod_topo usando o dicionário
    def mapear_cod_sup(superficie):
        return dict_sup.get(superficie, 0)  # 0 como valor padrão caso a superficie não esteja no dicionário
    # Aplicando a função para criar a coluna cod_topo em df_dados e df_avaliando
    df_superficie['coef_sp'] = df_superficie['Superfície'].apply(mapear_cod_sup)
    df_superficie_aval['coef_sp'] = df_superficie_aval['Superfície'].apply(mapear_cod_sup)
    df_superficie['fsp'] = round(df_superficie_aval['coef_sp'][0]/df_superficie['coef_sp'],2)
    df_superficie = df_superficie[['fsp']]
    
        #-----------------#

    # fator idade aparente e conservação (fic)
    # dicionário padrão construtivo
    dict_ic = {
            'id<5_novo': 1.00,
            'id<5_bom': 0.95,
            'id<5_reparos simples': 0.80,
            'id<5_reparos importantes': 0.45,
            'id entre 6 e 10_novo': 0.95,
            'id entre 6 e 10_bom': 0.90,
            'id entre 6 e 10_reparos simples': 0.75,
            'id entre 6 e 10_reparos importantes': 0.40,
            'id entre 11 e 30_novo': 0.85,
            'id entre 11 e 30_bom': 0.80,
            'id entre 11 e 30_reparos simples': 0.65,
            'id entre 11 e 30_reparos importantes': 0.35,
            'id entre 31 e 50_novo': 0.55,
            'id entre 31 e 50_bom': 0.50,
            'id entre 31 e 50_reparos simples': 0.45,
            'id entre 31 e 50_reparos importantes': 0.25,
            'id>50_novo': 0.30,
            'id>50_bom': 0.20,
            'id>50_reparos simples': 0.15,
            'id>50_reparos importantes': 0.10,
            'não se aplica' : 1,
        }
    # cria dataframe apenas com as colunas necessárias a partir do dataframe dos dados
    df_idade_cons = df_dados.copy()
    df_idade_cons = df_idade_cons[['Idade aparente e conservação']]
    # cria dataframe apenas com as colunas necessárias a partir do dataframe do avaliando
    df_idade_cons_aval = df_avaliando.copy()
    df_idade_cons_aval = df_idade_cons_aval[['Idade aparente e conservação']]
    # Função para mapear os valores de idade aparente e conservação para cod_id_cons usando o dicionário
    def mapear_cod_id_cons(id_cons):
        return dict_ic.get(id_cons, 0)
    # Aplicando a função para criar a coluna cod_topo em df_dados e df_avaliando
    df_idade_cons['coef_ic'] = df_idade_cons['Idade aparente e conservação'].apply(mapear_cod_id_cons)
    df_idade_cons_aval['coef_ic'] = df_idade_cons_aval['Idade aparente e conservação'].apply(mapear_cod_id_cons)
    df_idade_cons['fic'] = round(df_idade_cons_aval['coef_ic'][0] / df_idade_cons['coef_ic'],2)
    df_idade_cons = df_idade_cons[['fic']]

        #-----------------#

    # fator padrão construtivo (fpd)
    # dicionário padrão construtivo
    dict_pad = {
        'baixo_residencial': 1.00,
        'médio/baixo_residencial': 1.15,
        'médio_residencial': 1.30,
        'médio/alto_residencial': 1.45,
        'alto_residencial': 1.65,
        'baixo_comercial': 1.00,
        'médio/baixo_comercial': 1.08,
        'médio_comercial': 1.15,
        'médio/alto_comercial': 1.25,
        'alto_comercial': 1.40,
        'não se aplica' : 1,
        }
    
    # cria dataframe apenas com as colunas necessárias a partir do dataframe dos dados
    df_padrao = df_dados.copy()
    df_padrao = df_padrao[['Padrão construtivo']]
    # cria dataframe apenas com as colunas necessárias a partir do dataframe do avaliando
    df_padrao_aval = df_avaliando.copy()
    df_padrao_aval = df_padrao_aval[['Padrão construtivo']]
    # Função para mapear os valores de padrão construtivo para cod_pad usando o dicionário
    def mapear_cod_pad(padrao):
        return dict_pad.get(padrao, 0)  # 0 como valor padrão caso a topografia não esteja no dicionário
    # Aplicando a função para criar a coluna cod_topo em df_dados e df_avaliando
    df_padrao['coef_pd'] = df_padrao['Padrão construtivo'].apply(mapear_cod_pad)
    df_padrao_aval['coef_pd'] = df_padrao_aval['Padrão construtivo'].apply(mapear_cod_pad)
    df_padrao['fpd'] = round(df_padrao_aval['coef_pd'][0]/df_padrao['coef_pd'],2)
    df_padrao = df_padrao[['fpd']]

        #-----------------#

    # fator vagas de estacionamento (fvg)
    df_vaga = df_dados[['Vagas']].copy()
    df_vaga_aval = df_avaliando[['Vagas']].copy()
    # Calcular a diferença entre as colunas 'Vagas' nos dois DataFrames
    df_vaga['dif'] = df_vaga['Vagas'] - df_vaga_aval['Vagas'][0]
    # Definir a função para o cálculo da coluna 'fvg'
    def calculate_fcg(dif, vagas):
        if dif == 0:
            return 1
        else:
            return 1 - 0.067 * dif
    # Aplicar a função para calcular a coluna 'fcg'
    df_vaga['fvg'] = round(df_vaga.apply(lambda row: calculate_fcg(row['dif'], row['Vagas']), axis=1), 2)
    df_vaga = df_vaga[['fvg']]

        #-----------------#

    # fator extra (à critério do avaliador) (fex)
    df_exc = df_dados.copy()
    df_exc = df_exc[['Coeficiente extra']]
    df_exc['fex'] = round(df_avaliando['Coeficiente extra'][0] / df_exc['Coeficiente extra'], 2)
    df_exc = df_exc[['fex']]
        
        #-----------------#

        # concatemando o dataframe principal com as dataframes dos fatores
    result = pd.concat([df_dados, df_transp, df_area_const, df_area_terreno, df_profundidade, df_topografia, df_superficie, df_idade_cons, df_padrao, df_vaga, df_exc], axis=1)
    result['Valor_desc'] = round(result['Valor']*(result['fof']), 2)
    if finalidade == "Tipologias com árrea construída":
        result['Vunit'] = round((result['Valor_desc']/result['Área Construída']), 2)
    else:
        result['Vunit'] = round((result['Valor_desc']/result['Área Terreno']), 2)
    result = result[['lat','lon','Atratividade local', 'Área Construída', 'Área Terreno', 'Testada', 'Topografia', 'Superfície',
           'Idade aparente e conservação', 'Padrão construtivo', 'Vagas',
           'Coeficiente extra', 'Valor', 'fof','Valor_desc', 'Vunit','fal', 'fac', 'fat','fpe', 'ftp','fsp', 'fic',
           'fpd', 'fvg', 'fex']]
    result['Vunit_hom'] = round(result['Vunit'] * result['fal'] * \
                                                    result['fac'] * \
                                                    result['fat'] * \
                                                    result['fpe'] * \
                                                    result['ftp'] * \
                                                    result['fsp'] * \
                                                    result['fic'] * \
                                                    result['fpd'] * \
                                                    result['fvg'] * \
                                                    result['fex'], 2)
    
         #-----------------#
    
    # RESULTADOS ESTATÍSTICOS INICIAIS 
    num = len(result)
    media = round(result['Vunit_hom'].mean(), 2)
    valor_hom_máximo = round(result['Vunit_hom'].max(), 2)
    valor_hom_mínimo = round(result['Vunit_hom'].min(), 2)
    limite_superior = round(media * 1.3 ,2)
    limite_inferior = round(media * 0.7 ,2)
    desvio_padrao = round(result['Vunit_hom'].std(), 2)
    coef_variacao = round((desvio_padrao / media)*100, 2)
    
    # CRITÉRIO DE CHAUVENET
    dict_vc = {
        2: 1.15,3: 1.38,4: 1.54,5: 1.65,6: 1.73,7: 1.80,8: 1.85,9: 1.91,10: 1.96,11: 1.99,
        12: 2.03,13: 2.06,14: 2.10,15: 2.13,16: 2.16,17: 2.18,18: 2.20,19: 2.21,20: 2.24,
        21: 2.26,22: 2.28,23: 2.30,24: 2.31,25: 2.33,26: 2.35,27: 2.36,28: 2.37,29: 2.38,
        30: 2.93
    }
    vc = dict_vc[num]
    vc
    result['z-score'] = abs((result['Vunit_hom'] - media) / desvio_padrao)
    result['Status'] = np.where(result['z-score'] > vc, 'rejeitado', 'aceito')

    # para gerar uma tabela na interface
    result_render = renderizar_dataframe(result)
    
    # DADOS REMOVIDOS
    outliers = result[result['Status'] == 'rejeitado']
    
    # REMOÇÃO DE OUTLIERS PELO CRITÉRIO DE CHAUVENET
    result = result[result['Status'] != 'rejeitado']
    
    # GRAU DE FUNDAMENTAÇÃO
    
    # item_1 - Graus de Fundamentação (Caracterização do imóvel avaliando)
    if caract_avaliando == "Completa quanto a todos os fatores analisados":
        item_1 = 3
    elif caract_avaliando == "Completa quanto aos fatores utilizados no tratamento":
        item_1 = 2
    else:
        item_1 = 1

    # item_2 - Graus de Fundamentação (Quantidade mínima de dados)
    if num >= 12:
        item_2 = 3
    elif 5 <= num <12:
            item_2 = 2
    elif 3 <= num <5:
            item_2 = 1
    else:
        item_2 = 0

    # item_3 - Graus de Fundamentação (Identificação dos dados)  
    if ident_dados == "Apresentação de informações relativas a todas as características dos dados analisados, com foto e características observadas pelo autor do laudo":
        item_3 = 3
    elif ident_dados == "Apresentação de informações relativas a todas as características dos dados analisados":
        item_3 = 2
    else:
        item_3 = 1

    # item_4 - Graus de Fundamentação (	Intervalo admissível de ajuste para o conjunto de fatores)
    max = result.iloc[:, 16:26].max().max()
    min = result.iloc[:, 16:26].min().min()
    if num >= 5:
        if min >= 0.8 and max <= 1.2:
            item_4 = 3
        elif min >= 0.5 and max <= 2.0:
            item_4 = 2
        else:
            item_4 = 1  # Condição ausente aqui
    else:
        if min >= 0.8 and max <= 1.2:
            item_4 = 1
        else:
            item_4 = 0

    # enquadramento
    soma = item_1 + item_2 + item_3 + item_4
    if soma > 10 and item_2 == 3 and item_4 == 3 and item_1 >= 2 and item_3 >= 2:
        fundamentacao = "III"
    elif soma > 6 and item_2 >= 2 and item_4 >= 2 and item_1 >= 1 and item_3 >= 1:
        fundamentacao = "II"
    elif soma > 4 and item_2 >= 1 and item_4 >= 1 and item_1 >= 1 and item_3 >= 1:
        fundamentacao = "I"
    else:
        fundamentacao = "Fora dos critérios"
    
    # RESULTADOS ESTATÍSTICOS FINAIS 

    num = len(result)
    dados_outliers = len(outliers)
    media = round(result['Vunit_hom'].mean(), 2)
    valor_hom_máximo = round(result['Vunit_hom'].max(), 2)
    valor_hom_mínimo = round(result['Vunit_hom'].min(), 2)
    limite_superior = round(media * 1.3 ,2)
    limite_inferior = round(media * 0.7 ,2)
    desvio_padrao = round(result['Vunit_hom'].std(), 2)
    coef_variacao = round((desvio_padrao / media)*100, 2)
    # Crie uma string formatada com os RESULTADOS ESTATÍSTICOS FINAIS
    resultados_formatados = f"""
    Número de dados: {num} dados
    Valor Crítico (Chauvenet): {vc}
    Outliers: {dados_outliers} dado(s)
    Média saneada: {media} R$/m²
    Valor máximo: {valor_hom_máximo} R$/m²
    Valor mínimo: {valor_hom_mínimo} R$/m²
    Lim superior (Média*1,3): {limite_superior} R$/m²
    Lim inferior (Média*0,7): {limite_inferior} R$/m²
    Desvio padrão: {desvio_padrao} R$/m²
    Coeficiente variação: {coef_variacao} %
    """
    
    # INTEREVALO DE CONFIANÇA DE 80%
    # importando a tabela de t de student
    df_t = pd.read_excel('TABELAS.xlsx','t')
    # número de dados
    n =  result.shape[0]-1
    # "t" de student
    gl = df_t[df_t['gl (n-1)'] == n]
    tc = gl.iloc[0, 3]
    # limites infeiror e superior do IC de 80% e amplitude
    li_IC = round(media - tc * ((desvio_padrao/(num-1)**0.5)), 2)
    ls_IC = round(media + tc * ((desvio_padrao/(num-1)**0.5)), 2)
    A = round(ls_IC - li_IC, 2)
    A_perc = round((A / media)*100, 2)
    
    def calcular_grau(a):
        if a <= 30:
            return "Grau III"
        elif a <= 40:
            return "Grau II"
        elif a <= 50:
            return "Grau I"
        else:
            return "Fora dos critérios"
            
    precisao = calcular_grau(A_perc)
    
    # Crie uma string formatada com o INTEREVALO DE CONFIANÇA DE 80%
    intervalo_confiança = f"""
    t student: {tc}
    Média saneada: {media} R$/m²
    limite infeiror IC_80%: {li_IC} R$/m²
    limite superior IC_80%: {ls_IC} R$/m²
    Aplitude: {A} R$/m²
    Aplitude percentual: {A_perc} %
    Grau de Fundamentação {fundamentacao}
    Grau de Precisão: {precisao}
    """

    # VALOR CALCULADO A PARTIR DOS VALORES HOMOGENEIZADOS UTILIZANDO O CRITÉRIO DE CLASSAS D0 ABUNAHMAN
    # dividindo a amplitude em 3 classes
    C = round((A / 3), 2)
    # calculando os intervalos das 3 classes
    C1 = round(result[(result['Vunit_hom'] >= li_IC) & (result['Vunit_hom'] <= li_IC + C)]['Vunit_hom'].count(), 2)
    C2 = round(result[(result['Vunit_hom'] >= li_IC + C) & (result['Vunit_hom'] <= ls_IC - C)]['Vunit_hom'].count(), 2)
    C3 = round(result[(result['Vunit_hom'] >= ls_IC - C) & (result['Vunit_hom'] <= ls_IC)]['Vunit_hom'].count(), 2)
    # crinado listas com os valores encontrados nos intervalos
    list_C1 = result[(result['Vunit_hom'] >= li_IC) & (result['Vunit_hom'] <= li_IC + C)]['Vunit_hom'].tolist()
    list_C2 = result[(result['Vunit_hom'] >= li_IC + C) & (result['Vunit_hom'] <= ls_IC - C)]['Vunit_hom'].tolist()
    list_C3 = result[(result['Vunit_hom'] >= ls_IC - C) & (result['Vunit_hom'] <= ls_IC)]['Vunit_hom'].tolist()
 

    pC1 = round(sum(C1 * elemento for elemento in list_C1), 2)
    pC2 = round(sum(C2 * elemento for elemento in list_C2), 2)
    pC3 = round(sum(C3 * elemento for elemento in list_C3), 2)

    divisor = ((C1 * C1) if C1 != 0 else 0) +((C2 * C2) if C2 != 0 else 0) + ((C3 * C3) if C3 != 0 else 0)

    media_pond = round((pC1 + pC2 + pC3) / divisor, 2)


    # VALORES CALCULADOS
    Valor_imóvel = round(media * df_avaliando['Área Construída'], 2).item()
    LI = round(Valor_imóvel* 0.85, 2)
    LS = round(Valor_imóvel* 1.15, 2)
    
    Valor_imóvel_2 = round((media_pond) * df_avaliando['Área Construída'], 2).item()
    LI_classes = round(Valor_imóvel_2* 0.85, 2)
    LS_classes = round(Valor_imóvel_2* 1.15, 2)
    
    # Crie uma string formatada com os VALORES CALCULADOS
    valores_finais = f"""
    Área avaliando: {df_avaliando['Área Construída'].item()}
    ---------
    Valor (média simples): R$ {Valor_imóvel}
    LI: R$ {LI} 
    LS: R$ {LS}
    Vu (média simples): R$/m² {media}
    ---------
    Valor (critério classes): R$ {Valor_imóvel_2}
    LI: R$ {LI_classes} 
    LS: R$ {LS_classes}
    Vu (critério classes): R$/m² {media_pond}
    
    """
    #-----------------#
    
    # OUTPUTS
    
    # Crie um objeto ExcelWriter para escrever no arquivo Excel
    nome_com_extensao = os.path.basename(planilha.name)
    nome_do_arquivo = os.path.splitext(nome_com_extensao)[0]
    # Defina o nome da planilha de saída com base no nome da planilha de entrada
    output_file = f"{nome_do_arquivo}_relatório.xlsx"
    #output_file = 'relatório.xlsx' (substituído pelo código acima)
    
    with pd.ExcelWriter(output_file, engine='xlsxwriter') as writer:
        
        # Salve o DataFrame 'avaliando' na planilha 'relatório'
        df_avaliando.to_excel(writer, sheet_name='avaliando', index=False)
        
        #-----------------#
        
        # Salve o DataFrame 'result' na planilha 'relatório'
        df_dados.to_excel(writer, sheet_name='dados', index=False)
        
        #-----------------#
        
        # Salve o DataFrame 'dado_hom' na planilha 'relatório'
        result.to_excel(writer, sheet_name='dados_hom', index=False)
    
        #-----------------#
    
        # Salve o DataFrame 'outliers' na planilha 'relatório'
        outliers.to_excel(writer, sheet_name='outliers', index=False)
        
        #-----------------#
        
        # Crie um novo DataFrame com os resultados estatísticos
        result_estatisticos = pd.DataFrame({
            'Número de dados': [num],
            'Média': [media],
            'Valor homogeneizado máximo': [valor_hom_máximo],
            'Valor homogeneizado mínimo': [valor_hom_mínimo],
            'Limite superior (Média x 1,3)': [limite_superior],
            'Limite inferior (Média x 0,7)': [limite_inferior],
            'Desvio padrão': [desvio_padrao],
            'Coeficiente_variacao (%)': [coef_variacao]
        })

        # Transponha o DataFrame
        result_estatisticos = result_estatisticos.T.reset_index()
        # Defina os nomes das colunas do novo DataFrame
        result_estatisticos.columns = ['Nome da Coluna', 'Valor']
        result_estatisticos.to_excel(writer, sheet_name='resultados', index=False)

        #-----------------#
        
        # Crie um novo DataFrame com os resultados do IC
        result_ic = pd.DataFrame({
            'Número de dados': [n],
            't student': [tc],
            'Limite superior do IC de 80%': [ls_IC],
            'Limite inferior do IC de 80%': [li_IC],
            'Amplitude': [A],
            'Amplitude%':[A_perc],
            'Grau de Fundamentação': [fundamentacao],
            'Grau de Precisão': [precisao]
        })
        
        # Transponha o DataFrame
        result_ic = result_ic.T.reset_index()
        # Defina os nomes das colunas do novo DataFrame
        result_ic.columns = ['Nome da Coluna', 'Valor']
        result_ic.to_excel(writer, sheet_name='IC', index=False)
 
        #-----------------#

        # Crie um novo DataFrame com os resultados do cálculo das classes de Abunahman
        result_classes = pd.DataFrame({
            'C = Amplitude / 3': [round(C, 2)],
            'li_IC = limite inferior do IC': [round(li_IC, 2)],
            'li_IC + C = limite inferior do IC + C': [round(li_IC + C, 2)],
            'ls_IC - C = limite superior do IC + C': [round(ls_IC - C, 2)],
            'ls_IC = limite superior do IC': [round(ls_IC, 2)],
            'C1 = quantidade de dados na classe 1': [C1],
            'C2 = quantidade de dados na classe 2': [C2],
            'C3 = quantidade de dados na classe 3': [C3],
            'list_C1 = listagem de dados na classe 1': [list_C1],
            'list_C2 = listagem de dados na classe 2': [list_C2],
            'list_C3 = listagem de dados na classe 3': [list_C3],
            'Soma da multiplicação dos valor pelos pesos - classe 1': [pC1],
            'Soma da multiplicação dos valor pelos pesos - classe 2': [pC2],
            'Soma da multiplicação dos valor pelos pesos - classe 3': [pC3],
            'Divisor da somas das classes': [divisor],
            'Média ponderada': [media_pond]
        })

        
        # Transponha o DataFrame
        result_classes = result_classes.T.reset_index()
        # Defina os nomes das colunas do novo DataFrame
        result_classes.columns = ['Nome da Coluna', 'Valor']
        result_classes.to_excel(writer, sheet_name='classes', index=False)
        
         #-----------------#
        
           # Crie um novo DataFrame com os resultados do valor do imóvel
        result_valores = pd.DataFrame({
            'Valor (média simples): R$': [Valor_imóvel],
            'LI: R$': [LI], 
            'LS: R$': [LS],
            'Vu (média simples): R$/m²': [media],
            'Valor (critério classes) R$:': [Valor_imóvel_2],
            'Vu (critério classes): R$/m²': [media_pond],
            'LI_classes: R$': [LI_classes], 
            'LS_classes: R$': [LS_classes]  
        })
        
        
        # Transponha o DataFrame
        result_valores = result_valores.T.reset_index()
        # Defina os nomes das colunas do novo DataFrame
        result_valores.columns = ['Nome da Coluna', 'Valor']
        result_valores.to_excel(writer, sheet_name='valor', index=False)
        
        #-----------------#
       
        mapa = plotar_mapa_com_dois_dataframes(result, df_avaliando)
        #mapa = criar_mapa(df_avaliando) #novo
        
        #-----------------#
    
        # Salve o DataFrame 'result' em uma planilha
        result.to_excel(output_file, index=False)
        #result.to_excel('relatório.xlsx', index=False) (substituído pelo código acima)

        #-----------------#

        save_results_to_pdf(resultados_formatados, intervalo_confiança, valores_finais)
        result.to_excel(output_file, index=False)
        
        #-----------------#

        # Retorna tanto a planilha quanto os resultados formatados
        return output_file, 'resultados.pdf', result_render, resultados_formatados, intervalo_confiança, valores_finais, mapa #novo
        
    
# Interface do Gradio com input como arquivo XLS ou XLSX
interface = gr.Interface(
    fn=avaliacao_imovel,
    inputs=[
        gr.components.File(label="Upload planilha", type="file"),
        gr.inputs.Number(label="Número de linhas desejadas", default=10),
        gr.inputs.Dropdown(label="Tipo de imóvel", choices=["Terrenos e glebas","Tipologias com árrea construída"],default="Defina o tipo de imovel"), 
        gr.inputs.Dropdown(label="Caracterização do avaliando - Grau de Fundamentação", choices=["Completa quanto a todos os fatores analisados",
                                                                         "Completa quanto aos fatores utilizados no tratamento",
                                                                         "Adoção de situação paradigma"], 
                                                                        default="Defina o item 1 de Fundamentação"),
        gr.inputs.Dropdown(label="Identificação dos dados - Grau de Fundamentação", choices=["Apresentação de informações relativas a todas as características dos dados analisados, com foto e características observadas pelo autor do laudo",
                                                                         "Apresentação de informações relativas a todas as características dos dados analisados",
                                                                         "Apresentação de informações relativas a todas as características dos dados correspondentes aos fatores analisados"], 
                                                                        default="Defina o item 3 de Fundamentação")
    ],
    outputs=[
        gr.components.File(label="Download planilha"),
        gr.components.File(label="Download Relatório em PDF"),
        gr.outputs.HTML(label="Resultado Renderizado"),
        gr.components.Textbox(label="Resultados estatísticos"),
        gr.components.Textbox(label="Intervalo de confiança de 80%"),
        gr.components.Textbox(label="Valores Calculados"),
        gr.Plot(label="Geolocalização da amostra"),
    
    ],
    live=True,
    capture_session=True,
    theme=gr.themes.Soft(),
    title="avaliaFACTOR",
    description="Aplicativo MCDDM com tratamento por fatores  /  Faça o upload de uma planilha XLS ou XLSX com os dados / Para um exemplo de estrutura de planilha, você pode baixar <a href='https://huggingface.co/spaces/DavidSB/avaliaFACTOR/resolve/main/dados_entrada_factor.xlsx' download='dados_entrada_factor.xlsx'>aqui</a>.")

# Executar o aplicativo Gradio
if __name__ == "__main__":
    interface.launch(debug=True)