File size: 14,088 Bytes
cb4f0e9 1d5ab84 e7d3e2d e50ab07 e7d3e2d 8d959a7 b1f4f7a 8d959a7 e50ab07 8d959a7 1d5ab84 cb4f0e9 2bb0b78 1d5ab84 e8aacfb 1a6309c cb4f0e9 450e04d d2e7f27 8d20e0a e9650d3 1d5ab84 cb4f0e9 1d5ab84 2bb0b78 cb4f0e9 8d20e0a ce34d64 af02430 cb4f0e9 8d20e0a 2bb0b78 8d959a7 e50ab07 8d959a7 e50ab07 d2e7f27 e50ab07 8d959a7 d2e7f27 1470650 d2e7f27 8d959a7 e50ab07 8d959a7 8d20e0a e8aacfb cb4f0e9 e8aacfb ce34d64 a12fb0a cb4f0e9 a12fb0a b46bc02 cb4f0e9 ce34d64 8d20e0a ce34d64 b46bc02 1365073 cb4f0e9 8d20e0a 1365073 cb4f0e9 8d20e0a 1365073 8d959a7 cb4f0e9 8d959a7 6045345 cb4f0e9 6045345 1a6309c cb4f0e9 1d5ab84 ce34d64 1d5ab84 81de0ef 1d5ab84 cb4f0e9 ce34d64 1d5ab84 cb4f0e9 ce34d64 1d5ab84 e50ab07 81de0ef cb4f0e9 81de0ef e50ab07 81de0ef 2bc1a5b 37293dc 2bc1a5b 81de0ef e50ab07 81de0ef e37d935 1a6309c cb4f0e9 e7d3e2d b7d8a7d e7d3e2d b7d8a7d e7d3e2d b7d8a7d 1d5ab84 e50ab07 8d959a7 63fdb5a 8d959a7 aac4b76 995557b e7d3e2d 995557b e7d3e2d b7d8a7d 8d959a7 e7d3e2d 8d959a7 cb4f0e9 8d959a7 cb4f0e9 8d959a7 f30afe4 8d959a7 f30afe4 e7d3e2d 8d959a7 5e37144 e50ab07 e7d3e2d 5e37144 e7d3e2d e50ab07 e7d3e2d e50ab07 1a6309c e50ab07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
"""Module containing prompters"""
import logging
from enum import Enum
from typing import Generator, Optional, Union
from colorama import Fore
from fastchat.conversation import Conversation, get_conv_template
LOG = logging.getLogger("axolotl")
IGNORE_TOKEN_ID = -100
REPR_TEMPLATE = "\n<start>\n" + Fore.CYAN + "{full_prompt}" + Fore.RESET + "\n<end>\n"
class PromptStyle(Enum):
"""
Enum for prompt styles
"""
INSTRUCT = "instruct"
CHAT = "chat"
CHATML = "chatml"
class Prompter:
"""
Base prompter class for all prompters
"""
class AlpacaPrompter(Prompter):
"""
Base class for alpaca prompters
"""
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request."
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
system_format: str = "{system}"
turn_format: str
turn_no_input_format: str
prompt_style: Optional[PromptStyle] = None
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value):
self.prompt_style = prompt_style if prompt_style else PromptStyle.INSTRUCT.value
self.match_prompt_style()
def match_prompt_style(self):
# pylint: disable=duplicate-code
if self.prompt_style == PromptStyle.INSTRUCT.value:
self.turn_format = "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
self.turn_no_input_format = (
"### Instruction:\n{instruction}\n\n### Response:\n"
)
self.system_format = "{system}\n\n"
if self.prompt_style == PromptStyle.CHAT.value:
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:"
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:"
self.system_format = "SYSTEM: {system}\n"
if self.prompt_style == PromptStyle.CHATML.value:
self.turn_format = "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n"
self.turn_no_input_format = (
"<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
)
self.system_format = "<|im_start|>system\n{system}<|im_end|>\n"
def _build_result(self, instruction, input_text, output):
# returns the full prompt from instruction and optional input
# if a label (=response, =output) is provided, it's also appended.
if input_text:
res = (
self.system_format.format(system=self.system_prompt)
if self.system_prompt
else ""
) + self.turn_format.format(instruction=instruction, input=input_text)
else:
res = (
self.system_format.format(system=self.system_no_input_prompt)
if self.system_no_input_prompt
else ""
) + self.turn_no_input_format.format(instruction=instruction)
if output:
res = f"{res}{output}"
return res
def build_prompt(
self,
instruction: str,
input: Union[None, str] = None, # pylint: disable=redefined-builtin
output: Union[None, str] = None,
) -> Generator[str, None, None]:
yield self._build_result(instruction, input, output)
def __repr__(self) -> str:
return REPR_TEMPLATE.format(
full_prompt=self._build_result("{instruction}", "{input}", "{output}")
)
class UnpromptedPrompter(AlpacaPrompter):
"""
Prompter for alpaca no system prompt
"""
system_prompt = ""
system_no_input_prompt = ""
class JeopardyPrompter(AlpacaPrompter):
"""
Prompter for Jeopardy
"""
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
class MultipleChoiceExplainPrompter(AlpacaPrompter):
"""
Prompter for multiple choice explain
"""
system_prompt = (
"Choose the answer that best answers the question. Explain your reasoning.\n"
)
system_no_input_prompt = (
"Choose the answer that best answers the question. Explain your reasoning.\n"
)
class MultipleChoiceConcisePrompter(AlpacaPrompter):
"""
Prompter for multiple choice concise
"""
system_prompt = "Choose the answer that best answers the question. Be concise in your response.\n\n"
system_no_input_prompt = "Choose the answer that best answers the question. Be concise in your response.\n\n"
def match_prompt_style(self):
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:"
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:"
class SummarizeTLDRPrompter(AlpacaPrompter):
"""
Prompter for summarize TLDR
"""
system_prompt = ""
system_no_input_prompt = ""
def match_prompt_style(self):
self.turn_format = "USER: Summarize the following article as a TL;DR.\n{instruction}\n{input}\nASSISTANT:"
self.turn_no_input_format = "USER: Summarize the following article as a TL;DR.\n{instruction}\nASSISTANT:"
class GPTeacherPrompter(AlpacaPrompter):
"""
Prompter for GPTeacher
"""
class NomicGPT4AllPrompter(AlpacaPrompter):
"""
Prompter for NomicGPT4All
"""
class ReflectAlpacaPrompter(Prompter):
"""
Prompter for ReflectAlpaca
"""
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n"
system_no_input_prompt = "Below is an instruction that describes a task. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n"
prompt_input = (
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
)
prompt_no_input = "### Instruction:\n{instruction}\n\n### Response:\n"
agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}"
response_split = "### Response:"
def __init__(self, prompt_style="instruct"):
self.prompt_style = prompt_style
self.match_prompt_style()
def match_prompt_style(self):
if self.prompt_style == PromptStyle.INSTRUCT.value:
self.prompt_input = (
self.system_prompt
+ "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
)
self.prompt_no_input = (
self.system_no_input_prompt
+ "### Instruction:\n{instruction}\n\n### Response:\n"
)
self.agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}"
self.response_split = "### Final Response:"
if self.prompt_style == PromptStyle.CHAT.value:
self.prompt_input = (
self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:"
)
self.prompt_no_input = (
self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:"
)
self.agent_label = (
"\nTHOUGHT: {output}\nASSISTANT REFLECTION: {reflection}\nASSISTANT:"
)
self.response_split = "ASSISTANT:"
def _build_result(
self,
instruction: str,
input: Union[None, str] = None, # pylint: disable=redefined-builtin
output: Union[None, str] = None,
reflection: Union[None, str] = None,
corrected: Union[None, str] = None,
):
# returns the full prompt from instruction and optional input
# if a label (=response, =output) is provided, it's also appended.
if input:
res = self.prompt_input.format(instruction=instruction, input=input)
else:
res = self.prompt_no_input.format(instruction=instruction)
if output and reflection and corrected:
label = self.agent_label.format(
output=output,
reflection=reflection,
corrected=corrected,
)
res = f"{res}{label}"
return res
def build_prompt(
self,
instruction: str,
input: Union[None, str] = None, # pylint: disable=redefined-builtin
output: Union[None, str] = None,
reflection: Union[None, str] = None,
corrected: Union[None, str] = None,
) -> Generator[str, None, None]:
# pylint: disable=duplicate-code
yield self._build_result(
instruction,
input,
output,
reflection,
corrected,
)
def __repr__(self) -> str:
return REPR_TEMPLATE.format(
full_prompt=self._build_result("{instruction}", "{input}", "{output}")
)
SHAREGPT_ASSERTION_FAILED_ROLE = (
"Role did not alternate between turns (gpt and human). Please check your data."
)
class ShareGPTPrompter(Prompter): # pylint: disable=too-few-public-methods
"""
A prompter that generates prompts for the ShareGPT
"""
role_key_human = "human"
role_key_model = "gpt"
# Optional, only used for tool usage datasets.
role_key_tool = None
def __init__(
self,
prompt_style=None, # pylint: disable=unused-argument
conversation: Optional[Union[str, Conversation]] = None,
role_key_human: Optional[str] = None,
role_key_model: Optional[str] = None,
role_key_tool: Optional[str] = None,
):
if conversation:
if isinstance(conversation, Conversation):
self._conversation = conversation
else:
self._conversation = get_conv_template(conversation)
else:
self._conversation = get_conv_template("vicuna_v1.1")
if role_key_human:
self.role_key_human = role_key_human
if role_key_model:
self.role_key_model = role_key_model
if role_key_tool:
self.role_key_tool = role_key_tool
def _build_result(self, source):
if len(source) < 2:
# If there isn't a back and forth conversation, ignore it
# also happens on the data splitting leaving empty conversations
raise IndexError(
f"A conversation entry has less than 2 messages :\n{source}"
)
conv = self._conversation.copy()
# Add the conversation system prompt if provided, otherwise use the default one
if source[0]["from"] == "system":
conv.set_system_message(source[0]["value"])
source.pop(0)
roles = {self.role_key_human: conv.roles[0], self.role_key_model: conv.roles[1]}
if self.role_key_tool:
roles[self.role_key_tool] = conv.roles[2]
try:
# Apply prompt templates
if source[0]["from"] not in roles:
# Skip the first one if it is not from human
source = source[1:]
except IndexError as err:
# sometimes there is a bing or system chat
raise err
conv.messages = []
for _, sentence in enumerate(source):
role = roles[sentence["from"]]
if len(conv.messages) > 0 and (
(role == conv.messages[-1][0]) or (role not in conv.roles)
):
LOG.warning(f"{SHAREGPT_ASSERTION_FAILED_ROLE}: {sentence}")
conv.append_message(role, sentence["value"])
return conv.get_turns()
def build_prompt(self, source) -> Generator[str, None, None]:
turns = self._build_result(source)
for part in turns:
if part[0] and not part[1]:
LOG.warning(f"role with empty message: {part[0]}")
yield part
def __repr__(self) -> str:
turns = self._build_result([{"from": "{from}", "value": "{value}"}])
return "\n".join([REPR_TEMPLATE.format(full_prompt=part) for part in turns])
class ShareGPTPrompterV2(ShareGPTPrompter):
"""
A V2 prompter that generates prompts for the ShareGPT
"""
def __init__(
self,
conversation: Optional[Union[str, Conversation]] = None,
role_key_human: Optional[str] = None,
role_key_model: Optional[str] = None,
):
super().__init__(
conversation=conversation,
role_key_human=role_key_human,
role_key_model=role_key_model,
)
class UnsupportedPrompter(Prompter):
"""
A dummy class for custom prompters
"""
def __init__(self) -> None:
pass
def __repr__(self):
return "Pre-tokenized or custom dataset types are unsupported for logging"
|