Spaces:
Running
Running
File size: 9,085 Bytes
ce4236e 0d0c645 99d52d8 ce4236e 45e4726 0d0c645 ce4236e 0d0c645 5272e74 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 4fa4501 ce4236e 3023ae4 4fa4501 ce4236e 3023ae4 4fa4501 ce4236e 7ef3dbe 4fa4501 ce4236e 4fa4501 242350b ce4236e 4fa4501 ad9ec7b ce4236e ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 ad9ec7b 4fa4501 22fbe15 9999544 45e4726 475fe8c a6e4e6b e55148c f067f02 a6e4e6b 3ccc65d a6e4e6b 45a0b21 a6e4e6b aea8c18 e55148c f067f02 a6e4e6b aea8c18 f067f02 ba0ca5b c29b4c5 ba0ca5b b31c7ac a6e4e6b fe2a0c6 45a0b21 7fa8fbf e55148c 3ccc65d a6e4e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from keras.models import load_model
import random
import pyBigWig
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
(1, len(seq), -1))
from keras.models import load_model
class DCModelOntar:
def __init__(self, ontar_model_dir, is_reg=False):
self.model = load_model(ontar_model_dir)
def ontar_predict(self, x, channel_first=True):
if channel_first:
x = x.transpose([0, 2, 3, 1])
yp = self.model.predict(x)
return yp.ravel()
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def find_crispr_targets(sequence, chr, start, strand, transcript_id, exon_id, pam="NGG", target_length=20):
targets = []
len_sequence = len(sequence)
complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}
if strand == -1:
sequence = ''.join([complement[base] for base in sequence])
for i in range(len_sequence - len(pam) + 1):
if sequence[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = sequence[i - target_length:i + 3]
tar_start = start + i - target_length
tar_end = start + i + 3
gRNA = ''.join([dnatorna[base] for base in sequence[i - target_length:i]])
targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id])
return targets
# Function to predict on-target efficiency and format output
def format_prediction_output(targets, model_path):
dcModel = DCModelOntar(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0]).reshape(-1,4,1,23)
# Predict on-target efficiency using the model
prediction = dcModel.ontar_predict(encoded_seq)
# Format output
gRNA = target[1]
chr = target[2]
start = target[3]
end = target[4]
strand = target[5]
transcript_id = target[6]
exon_id = target[7]
formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, prediction[0]])
return formatted_data
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
all_exons = [] # To accumulate all exons
all_gene_sequences = [] # To accumulate all gene sequences
if transcripts:
for transcript in transcripts:
Exons = transcript['Exon']
all_exons.extend(Exons) # Add all exons from this transcript to the list
transcript_id = transcript['id']
for exon in Exons:
exon_id = exon['id']
gene_sequence = fetch_ensembl_sequence(exon_id)
if gene_sequence:
all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list
start = exon['start']
strand = exon['strand']
chr = exon['seq_region_name']
targets = find_crispr_targets(gene_sequence, chr, start, strand, transcript_id, exon_id)
if targets:
# Predict on-target efficiency for each gRNA site
formatted_data = format_prediction_output(targets, model_path)
results.extend(formatted_data)
else:
print(f"Failed to retrieve gene sequence for exon {exon_id}.")
else:
print("Failed to retrieve transcripts.")
# Return the sorted output, combined gene sequences, and all exons
return results, all_gene_sequences, all_exons
# def create_genbank_features(data):
# features = []
#
# # If the input data is a DataFrame, convert it to a list of lists
# if isinstance(data, pd.DataFrame):
# formatted_data = data.values.tolist()
# elif isinstance(data, list):
# formatted_data = data
# else:
# raise TypeError("Data should be either a list or a pandas DataFrame.")
#
# for row in formatted_data:
# try:
# start = int(row[1])
# end = int(row[2])
# except ValueError as e:
# print(f"Error converting start/end to int: {row[1]}, {row[2]} - {e}")
# continue
#
# strand = 1 if row[3] == '+' else -1
# location = FeatureLocation(start=start, end=end, strand=strand)
# feature = SeqFeature(location=location, type="misc_feature", qualifiers={
# 'label': row[7], # Use gRNA as the label
# 'note': f"Prediction: {row[8]}" # Include the prediction score
# })
# features.append(feature)
#
# return features
#
#
# def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
# features = create_genbank_features(df)
# record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
# description=f'CRISPR Cas9 predicted targets for {gene_symbol}', features=features)
# record.annotations["molecule_type"] = "DNA"
# SeqIO.write(record, output_path, "genbank")
#
#
# def create_bed_file_from_df(df, output_path):
# with open(output_path, 'w') as bed_file:
# for index, row in df.iterrows():
# chrom = row["Chr"]
# start = int(row["Start Pos"]) # Assuming 'Start Pos' is the column name in the df
# end = int(row["End Pos"]) # Assuming 'End Pos' is the column name in the df
# strand = '+' if row["Strand"] == '1' else '-' # Assuming 'Strand' is the column name in the df
# gRNA = row["gRNA"]
# score = str(row["Prediction"])
# transcript_id = row["Transcript"] # Assuming 'Transcript' is the column name in the df
#
# bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\t{transcript_id}\n")
#
#
# def create_csv_from_df(df, output_path):
# df.to_csv(output_path, index=False)
def create_bigwig(df, bigwig_path):
# Check for required columns in the DataFrame
required_columns = ["Chr", "Start Pos", "End Pos", "Prediction"]
if not all(column in df.columns for column in required_columns):
raise ValueError(f"DataFrame must contain {required_columns} columns.")
# Convert columns to the correct types
df['Start Pos'] = df['Start Pos'].astype(int)
df['End Pos'] = df['End Pos'].astype(int)
df['Prediction'] = df['Prediction'].astype(float)
# Sort the DataFrame by chromosome and start position to ensure order
df = df.sort_values(by=['Chr', 'Start Pos'])
# Calculate chromosome sizes for the BigWig header
chr_sizes = df.groupby('Chr')['End Pos'].max().to_dict()
header = [(chr, size) for chr, size in chr_sizes.items()]
# Create the BigWig file and add the header
bw = pyBigWig.open(bigwig_path, "w")
bw.addHeader(header)
# Create separate lists for chromosomes, starts, ends, and values
chromosomes = df['Chr'].tolist()
starts = df['Start Pos'].tolist()
ends = df['End Pos'].tolist()
values = df['Prediction'].astype(float).tolist()
# Add entries to the BigWig file
bw.addEntries(chromosomes, starts, ends=ends, values=values)
# Close the BigWig file
bw.close()
|