SmolVLM / app.py
merve's picture
merve HF staff
Revert chatbot
e4c787e verified
raw
history blame
7.08 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2"
).to("cuda")
@spaces.GPU
def model_inference(
images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p
):
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
if isinstance(images, Image.Image):
images = [images]
resulting_messages = [
{
"role": "user",
"content": [{"type": "image"}] + [
{"type": "text", "text": text}
]
}
]
if assistant_prefix:
text = f"{assistant_prefix} {text}"
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args.update(inputs)
# Generate
generated_ids = model.generate(**generation_args)
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
return generated_texts[0]
with gr.Blocks(fill_height=False) as demo:
gr.Markdown("## SmolVLM: Small yet Mighty 💫")
gr.Markdown("Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples.")
with gr.Column():
with gr.Row():
image_input = gr.Image(label="Upload your Image", type="pil")
with gr.Column():
query_input = gr.Textbox(label="Prompt")
assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")
submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Output")
with gr.Accordion(label="Advanced Generation Parameters", open=False):
examples=[
["example_images/rococo.jpg", "What art era is this?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
["example_images/examples_wat_arun.jpg", "I'm planning a visit to this temple, give me travel tips.", "", "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/examples_invoice.png", "What is the due date and the invoice date?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
["example_images/s2w_example.png", "What is this UI about?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
["example_images/examples_weather_events.png", "Where do the severe droughts happen according to this diagram?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
]
# Hyper-parameters for generation
max_new_tokens = gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy = gr.Radio(
[
"Top P Sampling",
"Greedy",
],
value="Top P Sampling",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=repetition_penalty,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.Examples(
examples = examples,
inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
max_new_tokens, repetition_penalty, top_p],
outputs=output,
fn=model_inference
)
submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
max_new_tokens, repetition_penalty, top_p], outputs=output)
demo.launch(debug=True)