Spaces:
Runtime error
Runtime error
File size: 19,872 Bytes
d4fe1e6 65e6336 d4fe1e6 65e6336 d4fe1e6 c39e9ff d4fe1e6 5d29bbd 6048c1c 8d6462e 6048c1c d4fe1e6 c39e9ff 241cc6f 6048c1c d4fe1e6 c39e9ff c186a11 8d6462e c39e9ff eb601c1 4ab31f0 d4fe1e6 5d29bbd bc31fa8 5d29bbd eb601c1 5d29bbd eb601c1 c39e9ff bc31fa8 5d29bbd 6048c1c eb601c1 4ab31f0 eb601c1 5d29bbd eb601c1 1955fd3 5d29bbd c97c9f9 5d29bbd 4ab31f0 5d29bbd eb601c1 5d29bbd bc31fa8 38930b8 5d29bbd eb601c1 5d29bbd eb601c1 5d29bbd eb601c1 5219f50 3f591a2 eb601c1 5d29bbd 4ab31f0 e6ffe8d 4ab31f0 8d6462e 6048c1c 3767bc2 c39e9ff 4ab31f0 e9116d0 4ab31f0 3767bc2 5d29bbd 6048c1c e6ffe8d 3f1a935 45b25a1 c195fe0 ff2dfb3 6048c1c 1955fd3 2442693 6048c1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# -*- coding: utf-8 -*-
"""Copy of compose_glide.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
"""
import gradio as gr
import torch as th
from composable_diffusion.download import download_model
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
from composable_diffusion.composable_stable_diffusion.pipeline_composable_stable_diffusion import \
ComposableStableDiffusionPipeline
import os
import shutil
import time
import glob
import numpy as np
import open3d as o3d
import open3d.visualization.rendering as rendering
from PIL import Image
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.pc_to_mesh import marching_cubes_mesh
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
print(has_cuda)
# init stable diffusion model
pipe = ComposableStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
).to(device)
pipe.safety_checker = None
# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()
flags = {
"image_size": 128,
"num_channels": 192,
"num_res_blocks": 2,
"learn_sigma": True,
"use_scale_shift_norm": False,
"raw_unet": True,
"noise_schedule": "squaredcos_cap_v2",
"rescale_learned_sigmas": False,
"rescale_timesteps": False,
"num_classes": '2',
"dataset": "clevr_pos",
"use_fp16": has_cuda,
"timestep_respacing": '100'
}
for key, val in flags.items():
clevr_options[key] = val
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
clevr_model.convert_to_fp16()
clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
# init stable diffusion model
pipe = ComposableStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
).to(device)
pipe.safety_checker = None
# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()
flags = {
"image_size": 128,
"num_channels": 192,
"num_res_blocks": 2,
"learn_sigma": True,
"use_scale_shift_norm": False,
"raw_unet": True,
"noise_schedule": "squaredcos_cap_v2",
"rescale_learned_sigmas": False,
"rescale_timesteps": False,
"num_classes": '2',
"dataset": "clevr_pos",
"use_fp16": has_cuda,
"timestep_respacing": '100'
}
for key, val in flags.items():
clevr_options[key] = val
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
clevr_model.convert_to_fp16()
clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
print('creating base model...')
base_name = 'base40M-textvec'
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
base_model.eval()
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
print('creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
base_model.load_state_dict(load_checkpoint(base_name, device))
print('downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
print('creating SDF model...')
name = 'sdf'
model = model_from_config(MODEL_CONFIGS[name], device)
model.eval()
print('loading SDF model...')
model.load_state_dict(load_checkpoint(name, device))
def compose_pointe(prompt, weights):
weight_list = [float(x.strip()) for x in weights.split('|')]
sampler = PointCloudSampler(
device=device,
models=[base_model, upsampler_model],
diffusions=[base_diffusion, upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[weight_list, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
def generate_pcd(prompt_list):
# Produce a sample from the model.
samples = None
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=prompt_list))):
samples = x
return samples
def generate_fig(samples):
pc = sampler.output_to_point_clouds(samples)[0]
return pc
# has_cuda = th.cuda.is_available()
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
# init stable diffusion model
pipe = ComposableStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
).to(device)
pipe.safety_checker = None
# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()
flags = {
"image_size": 128,
"num_channels": 192,
"num_res_blocks": 2,
"learn_sigma": True,
"use_scale_shift_norm": False,
"raw_unet": True,
"noise_schedule": "squaredcos_cap_v2",
"rescale_learned_sigmas": False,
"rescale_timesteps": False,
"num_classes": '2',
"dataset": "clevr_pos",
"use_fp16": has_cuda,
"timestep_respacing": '100'
}
for key, val in flags.items():
clevr_options[key] = val
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
clevr_model.convert_to_fp16()
clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
# init stable diffusion model
pipe = ComposableStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
).to(device)
pipe.safety_checker = None
# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()
flags = {
"image_size": 128,
"num_channels": 192,
"num_res_blocks": 2,
"learn_sigma": True,
"use_scale_shift_norm": False,
"raw_unet": True,
"noise_schedule": "squaredcos_cap_v2",
"rescale_learned_sigmas": False,
"rescale_timesteps": False,
"num_classes": '2',
"dataset": "clevr_pos",
"use_fp16": has_cuda,
"timestep_respacing": '100'
}
for key, val in flags.items():
clevr_options[key] = val
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
clevr_model.convert_to_fp16()
clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
print('creating base model...')
base_name = 'base40M-textvec'
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
base_model.eval()
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
print('creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
base_model.load_state_dict(load_checkpoint(base_name, device))
print('downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
print('creating SDF model...')
name = 'sdf'
model = model_from_config(MODEL_CONFIGS[name], device)
model.eval()
print('loading SDF model...')
model.load_state_dict(load_checkpoint(name, device))
def compose_pointe(prompt, weights, version):
weight_list = [float(x.strip()) for x in weights.split('|')]
sampler = PointCloudSampler(
device=device,
models=[base_model, upsampler_model],
diffusions=[base_diffusion, upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[weight_list, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
def generate_pcd(prompt_list):
# Produce a sample from the model.
samples = None
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=prompt_list))):
samples = x
return samples
def generate_fig(samples):
pc = sampler.output_to_point_clouds(samples)[0]
return pc
def generate_mesh(pc):
mesh = marching_cubes_mesh(
pc=pc,
model=model,
batch_size=4096,
grid_size=128, # increase to 128 for resolution used in evals
progress=True,
)
return mesh
def generate_video(mesh_path):
render = rendering.OffscreenRenderer(640, 480)
mesh = o3d.io.read_triangle_mesh(mesh_path)
mesh.compute_vertex_normals()
mat = o3d.visualization.rendering.MaterialRecord()
mat.shader = 'defaultLit'
render.scene.camera.look_at([0, 0, 0], [1, 1, 1], [0, 0, 1])
render.scene.add_geometry('mesh', mesh, mat)
timestr = time.strftime("%Y%m%d-%H%M%S")
os.makedirs(timestr, exist_ok=True)
def update_geometry():
render.scene.clear_geometry()
render.scene.add_geometry('mesh', mesh, mat)
def generate_images():
for i in range(64):
# Rotation
R = mesh.get_rotation_matrix_from_xyz((0, 0, np.pi / 32))
mesh.rotate(R, center=(0, 0, 0))
# Update geometry
update_geometry()
img = render.render_to_image()
o3d.io.write_image(os.path.join(timestr + "/{:05d}.jpg".format(i)), img, quality=100)
time.sleep(0.05)
generate_images()
image_list = []
for filename in sorted(glob.glob(f'{timestr}/*.jpg')): # assuming gif
im = Image.open(filename)
image_list.append(im)
# remove the folder
shutil.rmtree(timestr)
return image_list
prompt_list = [x.strip() for x in prompt.split("|")]
pcd = generate_pcd(prompt_list)
pc = generate_fig(pcd)
mesh = generate_mesh(pc)
timestr = time.strftime("%Y%m%d-%H%M%S")
mesh_path = os.path.join(f'{timestr}.ply')
with open(mesh_path, 'wb') as f:
mesh.write_ply(f)
image_frames = generate_video(mesh_path)
gif_path = os.path.join(f'{timestr}.gif')
image_frames[0].save(gif_path, save_all=True, optimizer=False, duration=5, append_images=image_frames[1:], loop=0)
return f'{timestr}.gif'
def compose_clevr_objects(prompt, weights, steps):
weights = [float(x.strip()) for x in weights.split('|')]
weights = th.tensor(weights, device=device).reshape(-1, 1, 1, 1)
coordinates = [
[
float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
for x in prompt.split('|')
]
coordinates += [[-1, -1]] # add unconditional score label
batch_size = 1
clevr_options['timestep_respacing'] = str(int(steps))
_, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
def model_fn(x_t, ts, **kwargs):
half = x_t[:1]
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
model_out = clevr_model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
masks = kwargs.get('masks')
cond_eps = eps[masks]
uncond_eps = eps[~masks]
half_eps = uncond_eps + (weights * (cond_eps - uncond_eps)).sum(dim=0, keepdims=True)
eps = th.cat([half_eps] * x_t.size(0), dim=0)
return th.cat([eps, rest], dim=1)
def sample(coordinates):
masks = [True] * (len(coordinates) - 1) + [False]
model_kwargs = dict(
y=th.tensor(coordinates, dtype=th.float, device=device),
masks=th.tensor(masks, dtype=th.bool, device=device)
)
samples = clevr_diffusion.p_sample_loop(
model_fn,
(len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
return samples
samples = sample(coordinates)
out_img = samples[0].permute(1, 2, 0)
out_img = (out_img + 1) / 2
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
out_img = out_img.numpy()
return out_img
def stable_diffusion_compose(prompt, steps, weights, seed):
generator = th.Generator("cuda").manual_seed(int(seed))
image = pipe(prompt, guidance_scale=7.5, num_inference_steps=steps,
weights=weights, generator=generator).images[0]
image.save(f'{"_".join(prompt.split())}.png')
return image
def compose_2D_diffusion(prompt, weights, version, steps, seed):
try:
with th.no_grad():
if version == 'Stable_Diffusion_1v_4':
res = stable_diffusion_compose(prompt, steps, weights, seed)
return res
else:
return compose_clevr_objects(prompt, weights, steps)
except Exception as e:
return None
examples_1 = "A castle in a forest | grainy, fog"
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
examples_5 = 'a white church | lightning in the background'
examples_6 = 'mystical trees | A dark magical pond | dark'
examples_7 = 'A lake | A mountain | Cherry Blossoms next to the lake'
image_examples = [
[examples_6, "7.5 | 7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 8],
[examples_6, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 8],
[examples_1, "7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 0],
[examples_7, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 3],
[examples_5, "7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 0],
[examples_3, "7.5 | 7.5 | 7.5 | 7.5 | 7.5", 'CLEVR Objects', 100, 0]
]
pointe_examples = [["a cake | a house", "7.5 | 7.5", 'Point-E'],
["a green avocado | a chair", "7.5 | 3", 'Point-E'],
["a toilet | a chair", "7 | 5", 'Point-E']]
with gr.Blocks() as demo:
gr.Markdown(
"""<h1 style="text-align: center;"><b>Composable Diffusion Models (ECCV
2022)</b> - <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion
-Models/">Project Page</a></h1>""")
gr.Markdown(
"""<table style="display: inline-table; table-layout: fixed; width: 100%;">
<tr>
<td>
<figure>
<img src="https://media.giphy.com/media/gKfDjdXy0lbYNyROKo/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
<figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND</span> "Dark"</figcaption>
</figure>
</td>
<td>
<figure>
<img src="https://media.giphy.com/media/sf5m1Z5FldemLMatWn/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
<figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND NOT</span> "Dark"</figcaption>
</figure>
</td>
<td>
<figure>
<img src="https://media.giphy.com/media/lTzdW41bFnrD8AYa0K/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
<figcaption style="color: black; font-size: 15px; text-align: center;">"A toilet" <span style="color: red">AND</span> "A chair"</figcaption>
</figure>
</td>
<td>
<figure>
<img src="https://media.giphy.com/media/nFkMh70kzZCwjbRrx5/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
<figcaption style="color: black; font-size: 15px; text-align: center;">"A monitor" <span style="color: red">AND</span> "A brown couch"</figcaption>
</figure>
</td>
</tr>
</table>
"""
)
gr.Markdown(
"""<p style="font-size: 18px;">Compositional visual generation by composing pre-trained diffusion models
using compositional operators, <b>AND</b> and <b>NOT</b>.</p>""")
gr.Markdown(
"""<p style="font-size: 18px;">When composing multiple inputs, please use <b>β|β</b> to separate them </p>""")
gr.Markdown(
"""<p>( <b>Note</b>: For composing CLEVR objects, we recommend using <b><i>x</i></b> in range <b><i>[0.1,
0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in
given ranges.)</p><hr>""")
with gr.Row():
with gr.Column():
gr.Markdown(
"""<h4>Composing natural language descriptions / objects for 2D image
generation</h4>""")
with gr.Row():
text_input = gr.Textbox(value="mystical trees | A dark magical pond | dark", label="Text to image prompt")
weights_input = gr.Textbox(value="7.5 | 7.5 | 7.5", label="Weights")
with gr.Row():
seed_input = gr.Number(0, label="Seed")
steps_input = gr.Slider(10, 200, value=50, label="Steps")
with gr.Row():
model_input = gr.Radio(
['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='Text to image model',
value='Stable_Diffusion_1v_4')
image_output = gr.Image()
image_button = gr.Button("Generate")
img_examples = gr.Examples(
examples=image_examples,
inputs=[text_input, weights_input, model_input, steps_input, seed_input]
)
with gr.Column():
gr.Markdown(
"""<h4>Composing natural language descriptions for 3D asset generation</h4>""")
with gr.Row():
asset_input = gr.Textbox(value="a cake | a house", label="Text to 3D prompt")
with gr.Row():
asset_weights = gr.Textbox(value="7.5 | 7.5", label="Weights")
with gr.Row():
asset_model = gr.Radio(['Point-E'], type="value", label='Text to 3D model', value='Point-E')
asset_output = gr.Image(label='GIF')
asset_button = gr.Button("Generate")
asset_examples = gr.Examples(examples=pointe_examples, inputs=[asset_input, asset_weights, asset_model])
image_button.click(compose_2D_diffusion,
inputs=[text_input, weights_input, model_input, steps_input, seed_input],
outputs=image_output)
asset_button.click(compose_pointe, inputs=[asset_input, asset_weights, asset_model], outputs=asset_output)
if __name__ == "__main__":
demo.queue(max_size=5)
demo.launch(debug=True)
|