File size: 15,790 Bytes
d4fe1e6
65e6336
d4fe1e6
 
 
 
65e6336
d4fe1e6
 
c39e9ff
d4fe1e6
 
5d29bbd
 
 
6048c1c
 
8d6462e
6048c1c
 
 
 
 
 
 
 
e64705a
6048c1c
 
 
 
 
 
 
d4fe1e6
c39e9ff
241cc6f
6048c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4fe1e6
6048c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64705a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6048c1c
eb601c1
4ab31f0
 
 
 
 
 
 
 
eb601c1
5d29bbd
eb601c1
1955fd3
 
 
5d29bbd
 
 
c97c9f9
5d29bbd
 
4ab31f0
 
 
5d29bbd
 
eb601c1
5d29bbd
bc31fa8
 
 
 
 
38930b8
5d29bbd
eb601c1
5d29bbd
 
 
 
 
 
eb601c1
5d29bbd
 
 
eb601c1
 
5219f50
3f591a2
eb601c1
5d29bbd
 
 
4ab31f0
e6ffe8d
4ab31f0
 
 
 
8d6462e
 
6048c1c
3767bc2
 
c39e9ff
4ab31f0
 
e9116d0
4ab31f0
3767bc2
 
5d29bbd
6048c1c
e6ffe8d
3f1a935
45b25a1
c195fe0
ff2dfb3
6048c1c
 
 
 
 
 
 
 
1955fd3
2442693
6048c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64705a
 
6048c1c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# -*- coding: utf-8 -*-
"""Copy of compose_glide.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
"""

import gradio as gr
import torch as th

from composable_diffusion.download import download_model
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
from composable_diffusion.composable_stable_diffusion.pipeline_composable_stable_diffusion import \
    ComposableStableDiffusionPipeline

import os
import shutil
import time
import glob
import numpy as np
import open3d as o3d
import open3d.visualization.rendering as rendering

import plotly.graph_objects as go
from PIL import Image
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.pc_to_mesh import marching_cubes_mesh

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
print(has_cuda)

# init stable diffusion model
pipe = ComposableStableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
).to(device)

pipe.safety_checker = None

# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()

flags = {
    "image_size": 128,
    "num_channels": 192,
    "num_res_blocks": 2,
    "learn_sigma": True,
    "use_scale_shift_norm": False,
    "raw_unet": True,
    "noise_schedule": "squaredcos_cap_v2",
    "rescale_learned_sigmas": False,
    "rescale_timesteps": False,
    "num_classes": '2',
    "dataset": "clevr_pos",
    "use_fp16": has_cuda,
    "timestep_respacing": '100'
}

for key, val in flags.items():
    clevr_options[key] = val

clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
    clevr_model.convert_to_fp16()

clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')

print('creating base model...')
base_name = 'base40M-textvec'
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
base_model.eval()
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])

print('creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])

print('downloading base checkpoint...')
base_model.load_state_dict(load_checkpoint(base_name, device))

print('downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))

print('creating SDF model...')
name = 'sdf'
model = model_from_config(MODEL_CONFIGS[name], device)
model.eval()

print('loading SDF model...')
model.load_state_dict(load_checkpoint(name, device))


def compose_pointe(prompt, weights, version):
    weight_list = [float(x.strip()) for x in weights.split('|')]
    sampler = PointCloudSampler(
        device=device,
        models=[base_model, upsampler_model],
        diffusions=[base_diffusion, upsampler_diffusion],
        num_points=[1024, 4096 - 1024],
        aux_channels=['R', 'G', 'B'],
        guidance_scale=[weight_list, 0.0],
        model_kwargs_key_filter=('texts', ''),  # Do not condition the upsampler at all
    )

    def generate_pcd(prompt_list):
        # Produce a sample from the model.
        samples = None
        for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=prompt_list))):
            samples = x
        return samples

    def generate_fig(samples):
        pc = sampler.output_to_point_clouds(samples)[0]
        return pc

    def generate_mesh(pc):
        mesh = marching_cubes_mesh(
            pc=pc,
            model=model,
            batch_size=4096,
            grid_size=128,  # increase to 128 for resolution used in evals
            progress=True,
        )
        return mesh

    def generate_video(mesh_path):
        render = rendering.OffscreenRenderer(640, 480)
        mesh = o3d.io.read_triangle_mesh(mesh_path)
        mesh.compute_vertex_normals()

        mat = o3d.visualization.rendering.MaterialRecord()
        mat.shader = 'defaultLit'

        render.scene.camera.look_at([0, 0, 0], [1, 1, 1], [0, 0, 1])
        render.scene.add_geometry('mesh', mesh, mat)

        timestr = time.strftime("%Y%m%d-%H%M%S")
        os.makedirs(timestr, exist_ok=True)

        def update_geometry():
            render.scene.clear_geometry()
            render.scene.add_geometry('mesh', mesh, mat)

        def generate_images():
            for i in range(64):
                # Rotation
                R = mesh.get_rotation_matrix_from_xyz((0, 0, np.pi / 32))
                mesh.rotate(R, center=(0, 0, 0))
                # Update geometry
                update_geometry()
                img = render.render_to_image()
                o3d.io.write_image(os.path.join(timestr + "/{:05d}.jpg".format(i)), img, quality=100)
                time.sleep(0.05)

        generate_images()
        image_list = []
        for filename in sorted(glob.glob(f'{timestr}/*.jpg')):  # assuming gif
            im = Image.open(filename)
            image_list.append(im)
        # remove the folder
        shutil.rmtree(timestr)
        return image_list

    prompt_list = [x.strip() for x in prompt.split("|")]
    pcd = generate_pcd(prompt_list)
    pc = generate_fig(pcd)

    fig = go.Figure(
        data=[
            go.Scatter3d(
                x=pc.coords[:, 0], y=pc.coords[:, 1], z=pc.coords[:, 2],
                mode='markers',
                marker=dict(
                    size=2,
                    color=['rgb({},{},{})'.format(r, g, b) for r, g, b in
                           zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
                )
            )
        ],
        layout=dict(
            scene=dict(
                xaxis=dict(visible=False),
                yaxis=dict(visible=False),
                zaxis=dict(visible=False)
            )
        ),
    )
    return fig

    # huggingface failed to render, so we only visualize pointclouds
    # mesh = generate_mesh(pc)
    # timestr = time.strftime("%Y%m%d-%H%M%S")
    # mesh_path = os.path.join(f'{timestr}.ply')
    # with open(mesh_path, 'wb') as f:
    #     mesh.write_ply(f)
    # image_frames = generate_video(mesh_path)
    # gif_path = os.path.join(f'{timestr}.gif')
    # image_frames[0].save(gif_path, save_all=True, optimizer=False, duration=5, append_images=image_frames[1:], loop=0)
    # return f'{timestr}.gif'


def compose_clevr_objects(prompt, weights, steps):
    weights = [float(x.strip()) for x in weights.split('|')]
    weights = th.tensor(weights, device=device).reshape(-1, 1, 1, 1)
    coordinates = [
        [
            float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
        for x in prompt.split('|')
    ]
    coordinates += [[-1, -1]]  # add unconditional score label
    batch_size = 1

    clevr_options['timestep_respacing'] = str(int(steps))
    _, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)

    def model_fn(x_t, ts, **kwargs):
        half = x_t[:1]
        combined = th.cat([half] * kwargs['y'].size(0), dim=0)
        model_out = clevr_model(combined, ts, **kwargs)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        masks = kwargs.get('masks')
        cond_eps = eps[masks]
        uncond_eps = eps[~masks]
        half_eps = uncond_eps + (weights * (cond_eps - uncond_eps)).sum(dim=0, keepdims=True)
        eps = th.cat([half_eps] * x_t.size(0), dim=0)
        return th.cat([eps, rest], dim=1)

    def sample(coordinates):
        masks = [True] * (len(coordinates) - 1) + [False]
        model_kwargs = dict(
            y=th.tensor(coordinates, dtype=th.float, device=device),
            masks=th.tensor(masks, dtype=th.bool, device=device)
        )
        samples = clevr_diffusion.p_sample_loop(
            model_fn,
            (len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
            device=device,
            clip_denoised=True,
            progress=True,
            model_kwargs=model_kwargs,
            cond_fn=None,
        )[:batch_size]

        return samples

    samples = sample(coordinates)
    out_img = samples[0].permute(1, 2, 0)
    out_img = (out_img + 1) / 2
    out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
    out_img = out_img.numpy()

    return out_img


def stable_diffusion_compose(prompt, steps, weights, seed):
    generator = th.Generator("cuda").manual_seed(int(seed))
    image = pipe(prompt, guidance_scale=7.5, num_inference_steps=steps,
                 weights=weights, generator=generator).images[0]
    image.save(f'{"_".join(prompt.split())}.png')
    return image


def compose_2D_diffusion(prompt, weights, version, steps, seed):
    try:
        with th.no_grad():
            if version == 'Stable_Diffusion_1v_4':
                res = stable_diffusion_compose(prompt, steps, weights, seed)
                return res
            else:
                return compose_clevr_objects(prompt, weights, steps)
    except Exception as e:
        return None


examples_1 = "A castle in a forest | grainy, fog"
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
examples_5 = 'a white church | lightning in the background'
examples_6 = 'mystical trees | A dark magical pond | dark'
examples_7 = 'A lake | A mountain  | Cherry Blossoms next to the lake'

image_examples = [
    [examples_6, "7.5 | 7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 8],
    [examples_6, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 8],
    [examples_1, "7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 0],
    [examples_7, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 3],
    [examples_5, "7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 0],
    [examples_3, "7.5 | 7.5 | 7.5 | 7.5 | 7.5", 'CLEVR Objects', 100, 0]
]

pointe_examples = [["a cake | a house", "7.5 | 7.5", 'Point-E'],
                   ["a green avocado | a chair", "7.5 | 3", 'Point-E'],
                   ["a toilet | a chair", "7 | 5", 'Point-E']]

with gr.Blocks() as demo:
    gr.Markdown(
        """<h1 style="text-align: center;"><b>Composable Diffusion Models (ECCV 
        2022)</b> - <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion
        -Models/">Project Page</a></h1>""")
    gr.Markdown(
        """<table style="display: inline-table; table-layout: fixed; width: 100%;">
                <tr>
                    <td>
                        <figure>
                        <img src="https://media.giphy.com/media/gKfDjdXy0lbYNyROKo/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
                        <figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND</span> "Dark"</figcaption>
                        </figure>
                    </td>
                    <td>
                        <figure>
                        <img src="https://media.giphy.com/media/sf5m1Z5FldemLMatWn/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
                        <figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND NOT</span> "Dark"</figcaption>
                        </figure>
                    </td>
                    <td>
                        <figure>
                        <img src="https://media.giphy.com/media/lTzdW41bFnrD8AYa0K/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
                        <figcaption style="color: black; font-size: 15px; text-align: center;">"A toilet" <span style="color: red">AND</span> "A chair"</figcaption>
                        </figure>
                    </td>
                    <td>
                        <figure>
                        <img src="https://media.giphy.com/media/nFkMh70kzZCwjbRrx5/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
                        <figcaption style="color: black; font-size: 15px; text-align: center;">"A monitor" <span style="color: red">AND</span> "A brown couch"</figcaption>
                        </figure>
                    </td>
                </tr>
        </table>
        """
    )
    gr.Markdown(
        """<p style="font-size: 18px;">Compositional visual generation by composing pre-trained diffusion models 
        using compositional operators, <b>AND</b> and <b>NOT</b>.</p>""")
    gr.Markdown(
        """<p style="font-size: 18px;">When composing multiple inputs, please use <b>β€œ|”</b> to separate them </p>""")
    gr.Markdown(
        """<p>( <b>Note</b>: For composing CLEVR objects, we recommend using <b><i>x</i></b> in range <b><i>[0.1, 
        0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in 
        given ranges.)</p><hr>""")
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """<h4>Composing natural language descriptions / objects for 2D image 
                generation</h4>""")
            with gr.Row():
                text_input = gr.Textbox(value="mystical trees | A dark magical pond | dark", label="Text to image prompt")
                weights_input = gr.Textbox(value="7.5 | 7.5 | 7.5", label="Weights")
            with gr.Row():
                seed_input = gr.Number(0, label="Seed")
                steps_input = gr.Slider(10, 200, value=50, label="Steps")
            with gr.Row():
                model_input = gr.Radio(
                    ['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='Text to image model',
                    value='Stable_Diffusion_1v_4')
            image_output = gr.Image()
            image_button = gr.Button("Generate")
            img_examples = gr.Examples(
                examples=image_examples,
                inputs=[text_input, weights_input, model_input, steps_input, seed_input]
            )

        with gr.Column():
            gr.Markdown(
                """<h4>Composing natural language descriptions for 3D asset generation</h4>""")
            with gr.Row():
                asset_input = gr.Textbox(value="a cake | a house", label="Text to 3D prompt")
            with gr.Row():
                asset_weights = gr.Textbox(value="7.5 | 7.5", label="Weights")
            with gr.Row():
                asset_model = gr.Radio(['Point-E'], type="value", label='Text to 3D model', value='Point-E')
            # asset_output = gr.Image(label='GIF')
            asset_output = gr.Plot(label='Plot')
            asset_button = gr.Button("Generate")
            asset_examples = gr.Examples(examples=pointe_examples, inputs=[asset_input, asset_weights, asset_model])

    image_button.click(compose_2D_diffusion,
                       inputs=[text_input, weights_input, model_input, steps_input, seed_input],
                       outputs=image_output)
    asset_button.click(compose_pointe, inputs=[asset_input, asset_weights, asset_model], outputs=asset_output)

if __name__ == "__main__":
    demo.queue(max_size=5)
    demo.launch(debug=True)