File size: 11,631 Bytes
7a7a355
a262720
 
 
 
 
 
 
a6cd4f9
ce3763b
 
 
 
 
62b65fb
a6cd4f9
914b2c0
 
a262720
 
 
 
7a7a355
a262720
7255e6f
6ea80ba
e49ec72
7a7a355
a262720
 
 
 
83aac3a
 
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b122b
 
a0780a3
6f4e679
e6b122b
d6bebc4
 
e6b122b
6f4e679
 
e6b122b
d6bebc4
 
e6b122b
 
 
 
a262720
5e43424
a262720
 
 
 
 
 
0c78c42
 
81c3f08
a262720
 
 
e6b122b
a262720
e6b122b
 
 
 
c1a8888
a262720
 
 
 
e6b122b
a262720
 
 
e6b122b
1daf94c
d3237a7
93b90c5
 
 
 
81c3f08
a763bb2
d6bebc4
 
a763bb2
c1a8888
a763bb2
f2ef1d4
9b3c97d
 
 
fb7c545
d6bebc4
 
 
 
 
 
 
 
 
 
9b3c97d
 
 
 
 
 
 
 
d6bebc4
 
 
 
13f4434
 
fb7c545
 
fd4d230
fb7c545
 
 
 
d6bebc4
 
 
 
fb7c545
 
 
81c3f08
bd816d8
48d358d
e6b122b
 
fb7c545
13f4434
eca3574
d6bebc4
efab7e2
 
 
 
 
 
 
 
 
 
 
606fc01
add4084
 
 
13f4434
a2c3ee0
 
 
 
13f4434
 
a2c3ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49ec72
add4084
 
7c19aad
a262720
a0780a3
a262720
 
 
 
 
 
 
 
 
 
e07fdc0
a262720
 
 
 
 
 
 
 
 
 
 
e07fdc0
d6bebc4
e49ec72
975305a
13f4434
a262720
d6bebc4
fd4d230
a262720
fd4d230
 
 
 
 
 
 
859b6e1
e6b122b
 
 
 
cc5c335
 
 
 
 
 
 
 
 
9dda51c
a262720
3a762d8
87b26e2
 
 
 
 
 
 
 
 
 
 
042c4fe
d6bebc4
606fc01
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
from spacy.lang.en import English
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
from negspacy.negation import Negex
#import en_ner_bc5cdr_md
import re


from streamlit.components.v1 import html

# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
    st.session_state.visibility = "visible"
    st.session_state.disabled = False

#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")
nlp0 = spacy.load("en_ner_bc5cdr_md")
nlp1 = spacy.load("en_ner_bc5cdr_md")

st.set_page_config(page_title ='Clinical Note Summarization', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -230px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')

## ======== Loading dataset ========
## Loading in Admission Dataset
df = pd.read_csv('shpi25nov.csv')

# Loading in Admission chief Complaint and diagnosis
df2 = pd.read_csv('cohort_cc_adm_diag.csv')

# Loading in Dischare History
df3 = pd.read_csv('cohort_past_history_12072022.csv')

# combining both data into one 
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])

# Deleting admission chief complaint and diagnosis after combining
del df2

# Remove decimal point from Admission ID
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))

#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
df3.rename(columns={'SUBJECT_ID':'Patient_ID',
                   'HADM_ID':'Admission_ID'}, inplace = True) 

#Filter selection 
st.sidebar.header("Search for Patient:")

# ===== Initial filter for patient and admission id =====
patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)    #Filter Patient
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]  #Filter available Admission id for patient
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)         
pastHistoryEpid = df3['HADM_ID'].loc[df3['Patient_ID'] == patient] #Filter list of available Past History (for History tab)


# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))

# ===== to display selected patient and admission id on main page
col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")

runtext = ''
inputNote  ='Input note here:'
# Query out relevant Clinical notes
original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)

original_text2 = original_text['Original_Text'].values
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
diagnosis =original_text['DIAGNOSIS'].values
reference_text = original_text['Reference_text'].values



##========= Buttons to the 5 tabs ======== Temp disabled Discharge Plan and Social Notes 
##col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1]) -- to uncomment and comment below line to include discharge plan and social notes 
col1, col2, col5 = st.columns([1,1,1])
col6, col7, col8 =st.columns([2,2,2])
with st.container():
    with col1:
        btnAdmission = st.button("🏥 Admission")
        if btnAdmission:
            #nav_page('Admission')
            inputNote = "Input Admission Note"
    with col2:
        btnDailyNarrative = st.button('📆Daily Narrative')
        if btnDailyNarrative:
            inputNote = "Input Daily Narrative Note"
#    with col3:
#        btnDischargePlan = st.button('🗒️Discharge Plan')
#        if btnDischargePlan:
#            inputNote = "Input Discharge Plan"
#    with col4:
#        btnSocialNotes = st.button('📝Social Notes')
#        if btnSocialNotes: 
#            inputNote = "Input Social Note"
    with col5:
        btnPastHistory = st.button('📇Past History (6 Mths)')
        if btnPastHistory:          
            inputNote = "Input History records"

##========= on Past History Tab  =========
if btnPastHistory:
    st.text_area('Past History','Date of discharge: xxxxxxxxx')
    
else:
    runtext =st.text_area(inputNote, str(original_text2), height=300)
    
    
with st.container(): 
    if btnPastHistory:
        with col6: 
            st.markdown('**No. of admission past 6 months: xx**')
        with col7: 
            st.text_area('Discharge Disposition:',' ', height=8) #to replace with dropdown list if data is available 
        with col8:
            #st.date_input('Select Admission Date') # To replace with a dropdown filter instead 
            #st.selectbox('Past Episodes',pastHistoryEp)
            pastHistory = st.selectbox(' ', pastHistoryEpid)


    
##========= END on Past History Tab  =========


# Extract words associated with each entity
def genEntities(ann, entity):
              # entity colour dict
              #ent_col = {'DISEASE':'#B42D1B', 'CHEMICAL':'#F06292'}
              ent_col = {'DISEASE':'pink', 'CHEMICAL':'orange'}
              # separate into the different entities
              entities = trans_df['Class'].unique()

              if entity in entities:
                             ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
                             entlist = ",".join(ent)
                             st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)


##======================== Start of NER Tagging ========================
# ====== Old NER ======
# doc = nlp(str(original_text2))
# colors = { "DISEASE": "pink","CHEMICAL": "orange"}
# options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
# ent_html = displacy.render(doc, style="ent", options=options)
# ====== End of Old NER ======
                  
#lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying)
def lemmatize(note, nlp):
    doc = nlp(note)
    lemNote = [wd.lemma_ for wd in doc]
    return " ".join(lemNote)

#function to modify options for displacy NER visualization
def get_entity_options():
    entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"]
    colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'}
    options = {"ents": entities, "colors": colors}    
    return options

#adding a new pipeline component to identify negation
def neg_model(nlp_model):
    nlp = spacy.load(nlp_model, disable = ['parser'])
#     nlp.add_pipe(nlp.create_pipe('sentencizer'))
    nlp.add_pipe('sentencizer')
#     negex = Negex(nlp)
    nlp.add_pipe(
    "negex",
    config={
        "chunk_prefix": ["no"],
    },
    last=True)
    return nlp

def negation_handling(nlp_model, note, neg_model):
    results = []
    nlp = neg_model(nlp_model) 
    note = note.split(".") #sentence tokenizing based on delimeter 
    note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
    for t in note:
        doc = nlp(t)
        for e in doc.ents:
            rs = str(e._.negex)
            if rs == "True": 
                results.append(e.text)
    return results

#function to identify span objects of matched negative phrases from text
def match(nlp,terms,label):
    patterns = [nlp.make_doc(text) for text in terms]
    matcher = PhraseMatcher(nlp.vocab)
    matcher.add(label, None, *patterns)
    return matcher

#replacing the labels for identified negative entities
def overwrite_ent_lbl(matcher, doc):
    matches = matcher(doc)
    seen_tokens = set()
    new_entities = []
    entities = doc.ents
    for match_id, start, end in matches:
        if start not in seen_tokens and end - 1 not in seen_tokens:
            new_entities.append(Span(doc, start, end, label=match_id))
            entities = [e for e in entities if not (e.start < end and e.end > start)]
            seen_tokens.update(range(start, end))
    doc.ents = tuple(entities) + tuple(new_entities)
    return doc

#deduplicate repeated entities 
def dedupe(items):
    seen = set()
    for item in items:
        item = str(item).strip()
        if item not in seen:
            yield item
            seen.add(item)

lem_clinical_note= lemmatize(runtext, nlp0)
#creating a doc object using BC5CDR model
doc = nlp1(lem_clinical_note)
options = get_entity_options()

#list of negative concepts from clinical note identified by negspacy
results0 = negation_handling("en_ner_bc5cdr_md", lem_clinical_note, neg_model)

matcher = match(nlp1, results0,"NEG_ENTITY")

#doc0: new doc object with added "NEG_ENTITY label"
doc0 = overwrite_ent_lbl(matcher,doc)

#visualizing identified Named Entities in clinical input text 
ent_html = displacy.render(doc0, style='ent', options=options)

##======================== End of NER Tagging ========================

def run_model(input_text):    
    if model == "BertSummarizer":
        output = original_text['BertSummarizer2s'].values
        st.write('Summary')

    elif model == "BertGPT2":
        output = original_text['BertGPT2'].values
        st.write('Summary')
        
      
    elif model == "t5seq2eq": 
        output = original_text['t5seq2eq'].values
        st.write('Summary')
         
    elif model == "t5":
        output = original_text['t5'].values
        st.write('Summary')
        
    elif model == "gensim": 
        output = original_text['gensim'].values
        st.write('Summary')
        
    elif model == "pysummarizer": 
        output = original_text['pysummarizer'].values
        st.write('Summary')


    
    st.success(output)


col1, col2 = st.columns([1,1])

with col1:
    if not(btnPastHistory): #to not show summary and references text for Past History
        st.button('Summarize')
        run_model(runtext)
        #sentences=runtext.split('.')
        st.text_area('Reference text', str(reference_text), height=150)
    else: 
        with st.expander('Full Discharge Summary'):
            historyAdmission =  df3.query(
                "Patient_ID  == @patient & Admission_ID == @pastHistory"
                )
            fulldischargesummary = historyAdmission['TEXT'].values
            st.write( str(fulldischargesummary))
    ##====== Storing the Diseases/Text
    table= {"Entity":[], "Class":[]}
    ent_bc = {}
    for x in doc.ents:
        ent_bc[x.text] = x.label_
    for key in ent_bc:
        table["Entity"].append(key)
        table["Class"].append(ent_bc[key])
    trans_df = pd.DataFrame(table)

with col2:
    st.button('NER')
    st.markdown('**CHIEF COMPLAINT:**')
    st.write(str(AdmissionChiefCom))
    st.markdown('**ADMISSION DIAGNOSIS:**')
    st.markdown(str(diagnosis))
    st.markdown('**PROBLEM/ISSUE**')
    genEntities(trans_df, 'DISEASE')
    st.markdown('**MEDICATION**')
    genEntities(trans_df, 'CHEMICAL')
    #st.table(trans_df)   
    st.markdown('**NER**')
    with st.expander("See NER Details"):
        st.markdown(ent_html, unsafe_allow_html=True)