File size: 25,625 Bytes
7a7a355
ef1d0aa
 
 
a262720
 
 
 
 
 
ee8b1e3
a262720
a6cd4f9
ce3763b
 
 
 
914b2c0
ef1d0aa
 
 
 
 
 
 
914b2c0
ef1d0aa
e6b122b
 
ef1d0aa
 
 
 
 
 
 
a0780a3
00bc252
6f4e679
d6bebc4
 
6f4e679
00bc252
6f4e679
e081f29
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1fd62
e6b122b
d6bebc4
e6b122b
 
 
ef1d0aa
a262720
5e43424
6d1fd62
ee8b1e3
efbc7f6
ee8b1e3
68183e5
ee8b1e3
d2e32eb
 
00bc252
a262720
d2e32eb
a262720
 
 
 
 
0c78c42
ee8b1e3
 
81c3f08
ef1d0aa
 
 
 
 
 
6d1fd62
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1fd62
a262720
 
 
e6b122b
00bc252
e6b122b
 
ee8b1e3
 
efbc7f6
c1a8888
a262720
ef1d0aa
 
 
a262720
93b90c5
 
 
81c3f08
a763bb2
d6bebc4
 
a763bb2
ef1d0aa
c1a8888
ef1d0aa
6d1fd62
 
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e081f29
f2ef1d4
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
d6bebc4
 
 
 
 
ef1d0aa
d6bebc4
ee8b1e3
add4084
 
ceb7b45
a2c3ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
a409e47
a2c3ee0
 
 
 
 
 
 
 
 
a409e47
a2c3ee0
a409e47
a2c3ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1d0aa
 
a2c3ee0
 
7c19aad
a262720
a0780a3
a262720
 
 
 
 
 
 
 
 
 
e07fdc0
a262720
 
 
 
 
 
 
 
 
 
 
e07fdc0
d6bebc4
e49ec72
975305a
ef1d0aa
 
13f4434
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb7b45
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb7b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1d0aa
 
 
 
ceb7b45
ef1d0aa
 
a262720
ef1d0aa
ceb7b45
ef1d0aa
 
ceb7b45
ef1d0aa
 
ceb7b45
ee8b1e3
a409e47
 
ceb7b45
 
 
 
 
 
 
 
 
db8266b
 
 
 
68183e5
ceb7b45
 
 
 
68183e5
ceb7b45
 
 
 
db8266b
ceb7b45
 
 
 
 
 
 
 
 
 
 
 
 
ef1d0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82c400e
7cc40f4
ef1d0aa
 
 
 
 
7cc40f4
ef1d0aa
 
 
 
 
 
7cc40f4
ef1d0aa
 
82c400e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import streamlit as st
import streamlit.components as components 
from annotated_text import annotated_text, annotation
from htbuilder import h3
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from negspacy.negation import Negex
from spacy import displacy
from spacy.lang.en import English
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
#import en_ner_bc5cdr_md
import re
from streamlit.components.v1 import html
import pickle
from functools import reduce
import operator
import itertools
from itertools import chain
from collections import Counter
from collections import OrderedDict

### ========== Loading Dataset ==========
## ======== Loading dataset ========
## Loading in Admission Dataset
##   df  = Admission 
##   df2 = Admission Chief Complaint and Diagnosis 
##   df3 = Discharge History 
##   df4 = Daily Narrative
# #=================================
nlp = spacy.load("en_ner_bc5cdr_md")

df = pd.read_csv('shpi25nov.csv')
df.sort_values(by='SUBJECT_ID',ascending = True, inplace=True)

df2 = pd.read_csv('cohort_cc_adm_diag.csv')

df3 = pd.read_csv('cohort_past_history_12072022.csv')
df3.sort_values(by='CHARTDATE',ascending = False, inplace=True)

df4 = pd.read_csv('24houreventsFulltextwdifference.csv')
#df4.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True)

# Loading in Daily Narrative - refreshed full 24 hr text
df5 = pd.read_csv('24hourevents10Jan.csv')
df5.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True)

#Append the updated 24 hr text and changes column 
df5.rename(columns={'hadmid':'HADM_ID',
                   'DATETIME':'STORETIME'}, inplace = True) 
df4 = pd.merge(df4[['HADM_ID','DESCRIPTION','SUBJECT_ID','CHARTTIME','STORETIME','CGID','TEXT','checks','_24_Hour_Events','Full_24_Hour_Events']],df5[['HADM_ID','STORETIME','full_24 Hour Events:','24 Hour Events:']], on = ['HADM_ID','STORETIME'], how = 'left')

hr24event_pattern = re.compile('((24 Hour Events):\\n(?s).*?Allergies:)')

#there are some records with full_24 Hour Events: null, hence replaced these text with the extracted text from the progress note
df4['hr24event_extracted'] = ''
for (idx, row) in df4.iterrows():
    try:
        text = df4['TEXT'][idx]
        df4['hr24event_extracted'][idx] = re.findall(hr24event_pattern,text)
        df4['hr24event_extracted'][idx] = [x for x in chain.from_iterable(df4['hr24event_extracted'][idx])]
    except:
        df4['hr24event_extracted'][idx] = ''

df4 = df4.reset_index(drop=True)
df4['hr24event_extracted'] = df4['hr24event_extracted'].apply(' '.join)
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+[a-z]+:\\n', ' ')
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('24 Hour Events:|24 Hour Events|Allergies:', '')
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+', ' ')
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\.\s+\.', '.')
df4['hr24event_extracted'] = df4['hr24event_extracted'].replace(r"^ +| +$", r"", regex=True)

df4.loc[df4['full_24 Hour Events:'].isnull(),'full_24 Hour Events:'] = df4['hr24event_extracted']
df4.loc[df4['24 Hour Events:'].isnull(),'24 Hour Events:'] = df4['_24_Hour_Events']

# combining both data into one 
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
# Deleting admission chief complaint and diagnosis after combining
del df2

# Remove decimal point from Admission ID and format words 
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df4['HADM_ID'] = df4['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['INDEX_HADM_ID'] = df3['INDEX_HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3["CHARTDATE_HADM_ID"] = df3["CHARTDATE"].astype(str) +' ('+ df3["HADM_ID"] +')'
df3["DIAGNOSIS"] = df3["DIAGNOSIS"].str.capitalize()
df3["DISCHARGE_LOCATION"] = df3["DISCHARGE_LOCATION"].str.capitalize()

df3["TEXT"] =df3["TEXT"].replace(r'\n','  \n ', regex=True)
df3["TEXT"] =df3["TEXT"].replace(r'#',' ', regex=True) 
df3["BertSummarizer"] =df3["BertSummarizer"].replace(r'#',' ', regex=True) 


#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
df3.rename(columns={'SUBJECT_ID':'Patient_ID',
                   'HADM_ID':'PAST_Admission_ID',
                   'INDEX_HADM_ID':'Admission_ID'}, inplace = True) 

df4.rename(columns={'HADM_ID':'Admission_ID',
                   'full_24 Hour Events:':'Full Text',
                   '24 Hour Events:':'Change_Note',
                   'past_24 Hour Events:':'Past_Change_Note'}, inplace = True)
                   
df4["Full Text"] =df4["Full Text"].replace('["[','').replace(']"]','')

## ========== Setting up Streamlit Sidebar ==========
st.set_page_config(page_title ='Patient Inpatient Progression Dashboard', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Patient Inpatient Progression Dashboard')
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -230px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')

#Filter selection 
st.sidebar.header("Search for Patient:")

# ===== Initial filter for patient and admission id =====
patientid = df['Patient_ID'].unique()
patient = st.sidebar.selectbox('Select Patient ID:', patientid)    #Filter Patient
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]  #Filter available Admission id for patient
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)   
pastHistoryEpDate = df3['CHARTDATE_HADM_ID'].loc[(df3['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)] 
countOfAdmission = len(pastHistoryEpDate)

# List of Model available
#model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
model = 'BertSummarizer'
st.sidebar.markdown('Model: ' + model) 

original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)

original_text2 = original_text['Original_Text'].values
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
diagnosis =original_text['DIAGNOSIS'].values
reference_text = original_text['Reference_text'].values
dailyNoteChange =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()]

dailyNoteFull =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()]
                        
dailyNoteChange.rename(columns={'STORETIME':'Time of Record',
                   'Change_Note':'Note Changes'}, inplace = True) 

#dailyNoteChange['Time of Record'] =  pd.to_datetime(dailyNoteChange['Time of Record'])

dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%Y/%m/%d %H:%M')
#dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%d/%m/%Y %H:%M')
dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'] -dailyNoteChange['TimeDiff'].shift()
dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'].fillna(pd.Timedelta(seconds=0))
dailyNoteChange['TimeDiff']= dailyNoteChange['TimeDiff'].dt.total_seconds().div(60).astype(int)
dailyNoteChange['Hour'] = dailyNoteChange['TimeDiff'] // 60
dailyNoteChange['Mins'] = dailyNoteChange['TimeDiff']- dailyNoteChange['Hour'] * 60
dailyNoteChange["TimeDiff"] = dailyNoteChange['Hour'].astype(str) + " hours " + dailyNoteChange['Mins'].astype(str) + " Mins"
del dailyNoteChange['Hour']
del dailyNoteChange['Mins']

dailyNoteChange["PreviousRecord"] = dailyNoteChange["Time of Record"].shift()

dailyNoteChange.sort_values(by=['Time of Record'],ascending = False, inplace=True)

dailyNoteFull.rename(columns={'STORETIME':'Time of Record',
                   'Change_Note':'Note Changes'}, inplace = True) 

dailyNote = df4['Full Text'].loc[(df4['Admission_ID']==HospitalAdmission)]
dailyNote = dailyNote.unique()

try:
    mindate = min(dailyNoteFull['Time of Record'])
except:
    mindate = ''

# ===== to display selected patient and admission id on main page
col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")

##========= Buttons to the 3 tabs ======== Temp disabled Discharge Plan and Social Notes 
col1, col2, col3 = st.columns([1,1,1])
#col6, col7 =st.columns([2,2])
with st.container():
    with col1:
        btnAdmission = st.button("🏥 Admission")
    with col2:
        btnDailyNarrative = st.button('📆Daily Narrative')
    with col3:
        btnPastHistory = st.button('📇Past History (6 Mths)')


##======================== Start of NER Tagging ========================
                 
#lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying)
def lemmatize(note, nlp):
    doc = nlp(note)
    lemNote = [wd.lemma_ for wd in doc]
    return " ".join(lemNote)

#function to modify options for displacy NER visualization
def get_entity_options():
    entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"]
    colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'}
    options = {"ents": entities, "colors": colors}    
    return options

#adding a new pipeline component to identify negation
def neg_model():
    nlp.add_pipe('sentencizer')
    nlp.add_pipe(
    "negex",
    config={
        "chunk_prefix": ["no"],
    },
    last=True)
    return nlp

def negation_handling(note, neg_model):
    results = []
    nlp = neg_model() 
    note = note.split(".") #sentence tokenizing based on delimeter 
    note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
    for t in note:
        doc = nlp(t)
        for e in doc.ents:
            rs = str(e._.negex)
            if rs == "True": 
                results.append(e.text)
    return results

#function to identify span objects of matched negative phrases from text
def match(nlp,terms,label):
    patterns = [nlp.make_doc(text) for text in terms]
    matcher = PhraseMatcher(nlp.vocab)
    matcher.add(label, None, *patterns)
    return matcher

#replacing the labels for identified negative entities
def overwrite_ent_lbl(matcher, doc):
    matches = matcher(doc)
    seen_tokens = set()
    new_entities = []
    entities = doc.ents
    for match_id, start, end in matches:
        if start not in seen_tokens and end - 1 not in seen_tokens:
            new_entities.append(Span(doc, start, end, label=match_id))
            entities = [e for e in entities if not (e.start < end and e.end > start)]
            seen_tokens.update(range(start, end))
    doc.ents = tuple(entities) + tuple(new_entities)
    return doc

#deduplicate repeated entities 
def dedupe(items):
    seen = set()
    for item in items:
        item = str(item).strip()
        if item not in seen:
            yield item
            seen.add(item)
     
 ##======================== End of NER Tagging ========================


def run_model(input_text):    
    if model == "BertSummarizer":
        output = original_text['BertSummarizer2s'].values
        st.write('Summary')

    elif model == "BertGPT2":
        output = original_text['BertGPT2'].values
        st.write('Summary')
        
      
    elif model == "t5seq2eq": 
        output = original_text['t5seq2eq'].values
        st.write('Summary')
         
    elif model == "t5":
        output = original_text['t5'].values
        st.write('Summary')
        
    elif model == "gensim": 
        output = original_text['gensim'].values
        st.write('Summary')
        
    elif model == "pysummarizer": 
        output = original_text['pysummarizer'].values
        st.write('Summary')


    
    st.success(output)
    
def Admission():

    with st.container():
        
        runtext =st.text_area('History of presenting illnesses at admission', str(original_text2)[1:-1], height=300)  
        lem_clinical_note= lemmatize(runtext, nlp)
        #creating a doc object using BC5CDR model
        doc = nlp(lem_clinical_note)
        options = get_entity_options()

        #list of negative concepts from clinical note identified by negspacy
        results0 = negation_handling(lem_clinical_note, neg_model)

        matcher = match(nlp, results0,"NEG_ENTITY")

        #doc0: new doc object with added "NEG_ENTITY label"
        doc0 = overwrite_ent_lbl(matcher,doc)

        #visualizing identified Named Entities in clinical input text 
        ent_html = displacy.render(doc0, style='ent', options=options)
    
    col1, col2 = st.columns([1,1])      
    with st.container():
        with col1:
            st.button('Summarize')
            run_model(runtext)

        with col2:
            st.button('NER')
            # ===== Adding the Disease/Chemical into a list =====    
            problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
            medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
            st.markdown('**CHIEF COMPLAINT:**')
            st.write(str(AdmissionChiefCom)[1:-1])
            st.markdown('**ADMISSION DIAGNOSIS:**')
            st.markdown(str(diagnosis)[1:-1].capitalize())
            st.markdown('**PROBLEM/ISSUE**')
            #st.markdown(problem_entities)
            st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
            #genEntities(trans_df, 'DISEASE')
            st.markdown('**MEDICATION**')
            st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
            #genEntities(trans_df, 'CHEMICAL')
            #st.table(trans_df)   
            st.markdown('**NER**')
            with st.expander("See NER Details"):
                st.markdown(ent_html, unsafe_allow_html=True)

alphabets= "([A-Za-z])"
prefixes = "(mr|st|mrs|ms|dr)[.]"
suffixes = "(inc|ltd|jr|sr|co)"
starters = "(mr|mrs|ms|dr|he\s|she\s|it\s|they\s|their\s|our\s|we\s|but\s|however\s|that\s|this\s|wherever)"
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
websites = "[.](com|net|org|io|gov)"
digits = "([0-9])"

def split_into_sentences(text):
#     text = str(text)
    text = " " + text + "  "
    text = text.replace("\n"," ")
#     text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2} [0-9]{2}:[0-9]{2}:[0-9]{2}"," ")
    text = re.sub(prefixes,"\\1<prd>",text)
    text = re.sub(websites,"<prd>\\1",text)
    text = re.sub(digits + "[.]" + digits,"\\1<prd>\\2",text)
    if "..." in text: text = text.replace("...","<prd><prd><prd>")
    if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
    text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
    text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
    text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
    text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
    text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
    text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
    text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
    if "”" in text: text = text.replace(".”","”.")
    if "\"" in text: text = text.replace(".\"","\".")
    if "!" in text: text = text.replace("!\"","\"!")
    if "?" in text: text = text.replace("?\"","\"?")
    text = text.replace(".",".<stop>")
    text = text.replace("?","?<stop>")
    text = text.replace("!","!<stop>")
    text = text.replace("[0-9]{2}:[0-9]{2}:[0-9]{2}:","[0-9]{2}:[0-9]{2}:[0-9]{2}:<stop>")
    text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}","[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}<stop>")
    # text = text.replace("-","-<stop>")
#     text = text.replace("- -","- -<stop>")
    text = text.replace("<br><br>","<stop><br><br>")
    text = text.replace("<prd>",".")
    sentences = text.split("<stop>")
#     sentences = text.split('-')
#     sentences = sentences[:-1]
    sentences = [s.strip() for s in sentences]
    return sentences

def DailyNarrative():
    with st.container(): 
        dailyNarrativeTime= st.selectbox('',dailyNoteChange['Time of Record'])
        
        if df4[['Change_Note']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].size != 0:
            changeNote = df4[['Change_Note']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].values[0]
        else: 
            changeNote = 'No records'

        
        if dailyNoteChange['TimeDiff'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].empty: 
            changeNoteTime = 'No records'
            previousRecord = ' '
        else:
            changeNoteTime =dailyNoteChange['TimeDiff'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].values[0]
            previousRecord =dailyNoteChange['PreviousRecord'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].values[0]
        
        if dailyNarrativeTime == mindate:
            changeNote = 'Nil'    
        else:
            changeNote = str(changeNote).replace('["[','').replace(']"]','').replace("'","").replace('"','').replace(',','').replace('\\','').replace('[','').replace(']','').replace('\\','')
            changeNote = changeNote.strip("[-,]").strip("")
            changeNote = ' '.join(changeNote.split())
        # changeNote_split = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])|-', changeNote)
        # changeNote_split = [x.strip(' ') for x in changeNote_split]
        
        changeNote_split = split_into_sentences(changeNote)
        changeNote_split = [x for x in changeNote_split if x]

        latestRecord = dailyNoteChange['Time of Record'].max()
        st.markdown('Changes: ' + changeNote)
        st.markdown('Changes recorded from previous record at ' + str(previousRecord) + ' ,  ' + str(changeNoteTime) + ' ago') 
            
        if df4[['Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].empty:
            dailyNarrativeText = 'No Records' 
        else:  
            dailyNoteChange.sort_values(by='Time of Record',ascending = True, inplace=True)
            dailyNoteChange["Combined"] = ''
            count = 0 
            text ='' 
            for index, row in dailyNoteChange.iterrows():
                text =  '[**' + str(row['Time of Record']) + '**]' + ':<stop> ' + row['Full Text'] + '<br>' + '<br>' +  text  
                dailyNoteChange['Combined'].iloc[count] = text
                count = count + 1
            dailyNarrativeText =dailyNoteChange[['Combined']].loc[(dailyNoteChange['Time of Record'] == dailyNarrativeTime)].values[0]
            #dailyNarrativeText =df4[['Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['DATETIME'] == dailyNarrativeTime)].values[0]
            
        
        dailyNarrativeText = str(dailyNarrativeText).replace('["[','').replace(']"]','').replace("'","").replace(',','').replace('"','').replace('[','').replace(']','').replace('\\','')
        dailyNarrativeText = dailyNarrativeText.strip("[-,]").strip(" ")
        dailyNarrativeText = ' '.join(dailyNarrativeText.split())
        # dailyNarrativeText_split = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])|-|<br><br>', dailyNarrativeText)
        # dailyNarrativeText_split = [x.strip(' ') for x in dailyNarrativeText_split]
        
        dailyNarrativeText_split = split_into_sentences(dailyNarrativeText)
        
        #st.table(dailyNoteChange)  # testing to see if data calculate correctly 
        
        with st.expander("See in detail"):

                             
                ls = []

                for sent in dailyNarrativeText_split:
                    if sent in changeNote_split:
                        sent = sent.replace(str(sent),str(annotation(sent)))
                        ls.append(sent)
                    else:
                        ls.append(sent)
                highlight = ' '.join(ls)
                st.markdown(highlight, unsafe_allow_html=True)

            

def PastHistory(): 
    col6, col7 =st.columns([2,2])
    with st.container(): 
        with col6: 

            st.markdown('**No. of admission past 6 months:**')
            st.markdown(countOfAdmission)
       
        with col7:
            #st.date_input('Select Admission Date') # To replace with a dropdown filter instead 
            #st.selectbox('Past Episodes',pastHistoryEp)
            pastHistory = st.selectbox('Select Past History Admission', pastHistoryEpDate, format_func=lambda x: 'Select an option' if x == '' else x)        
    
    historyAdmission =  df3.query(
                "Patient_ID  == @patient & CHARTDATE_HADM_ID == @pastHistory"
                )
    
   
    if historyAdmission.shape[0] == 0:
        runtext = "No past episodes" 
    else: 
        #runtext = historyAdmission['hospital_course_processed'].values[0]
        runtext = historyAdmission['hospital_course_processed'].values[0]
    
    lem_clinical_note= lemmatize(runtext, nlp)
    #creating a doc object using BC5CDR model
    doc = nlp(lem_clinical_note)
    options = get_entity_options()

    #list of negative concepts from clinical note identified by negspacy
    results0 = negation_handling(lem_clinical_note, neg_model)

    matcher = match(nlp, results0,"NEG_ENTITY")

    #doc0: new doc object with added "NEG_ENTITY label"
    doc0 = overwrite_ent_lbl(matcher,doc)

    #visualizing identified Named Entities in clinical input text 
    ent_html = displacy.render(doc0, style='ent', options=options)
    
# ===== Adding the Disease/Chemical into a list =====    
    problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
    medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
    if historyAdmission.shape[0] == 0:
        st.markdown('Admission Date: NA')
        st.markdown('Date of Discharge: NA') 
        st.markdown('Days from current admission: NA')
    else: 
        st.markdown('Admission Date: ' + historyAdmission['ADMITTIME'].values[0])
        st.markdown('Date of Discharge: ' + historyAdmission['DISCHTIME'].values[0])
        st.markdown('Days from current admission: ' + str(historyAdmission['days_from_index'].values[0]) +' days')

    #st.markdown('Summary: ')
    st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Summary: </b></p>', unsafe_allow_html=True)
    
              
    if model == "BertSummarizer":
        if historyAdmission.shape[0] == 0:
            st.markdown('NA')
        else: 
            st.markdown(str(historyAdmission['BertSummarizer'].values[0]))
    elif model == "t5seq2eq":
        if historyAdmission.shape[0] == 0:
            st.markdown('NA')
        else: 
            st.markdown(str(historyAdmission['t5seq2eq'].values[0]))     
    st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Diagnosis: </b></p>', unsafe_allow_html=True)
    
    if historyAdmission.shape[0] == 0:
        st.markdown('NA')
    else:
        st.markdown(str(historyAdmission['Diagnosis_Description'].values[0]))
        st.markdown('**PROBLEM/ISSUE**')
        st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
        st.markdown('**MEDICATION**')
        st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)        
        st.markdown('Discharge Disposition: ' + str(historyAdmission['DISCHARGE_LOCATION'].values[0]))
        with st.expander('Full Discharge Summary'):
                #st.write("line 1  \n  line 2  \n line 3")
                fulldischargesummary = historyAdmission['TEXT'].values[0]
                st.write(fulldischargesummary)

if "load_state" not in st.session_state: 
    st.session_state.load_state = False

if "admission_button_clicked" not in st.session_state: 
    st.session_state.admission_button_clicked = False
    
if "daily_button_clicked" not in st.session_state: 
    st.session_state.daily_button_clicked = False

if "past_button_clicked" not in st.session_state: 
    st.session_state.past_button_clicked = False
    
    

if btnAdmission or st.session_state["admission_button_clicked"]:
    st.session_state["admission_button_clicked"] =  True
    st.session_state["daily_button_clicked"] =  False
    st.session_state["past_button_clicked"] =  False
    Admission()
    
if btnDailyNarrative or st.session_state["daily_button_clicked"]:
    st.session_state["daily_button_clicked"] =  True
    st.session_state["admission_button_clicked"] =  False
    st.session_state["past_button_clicked"] =  False
    DailyNarrative()

    
if btnPastHistory or st.session_state["past_button_clicked"]:
    st.session_state["past_button_clicked"] =  True
    st.session_state["daily_button_clicked"] =  False
    st.session_state["admission_button_clicked"] =  False
    PastHistory()