File size: 6,801 Bytes
7a7a355
a262720
 
 
 
 
 
 
a6cd4f9
a262720
62b65fb
a6cd4f9
914b2c0
 
 
a262720
 
 
 
7a7a355
a262720
 
7a7a355
a262720
 
 
 
83aac3a
 
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bebc4
 
 
 
 
 
a262720
 
d6bebc4
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bebc4
a262720
 
 
 
 
 
 
1daf94c
d3237a7
93b90c5
 
 
 
a763bb2
d6bebc4
 
a763bb2
 
f2ef1d4
d6bebc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f00f3
eca3574
d6bebc4
efab7e2
 
 
 
 
 
 
 
 
 
 
606fc01
d6bebc4
2f6ed2c
57dc050
1ed7511
72a0309
 
 
7c19aad
 
 
a262720
 
 
 
 
 
 
 
 
 
 
 
e07fdc0
a262720
 
 
 
 
 
 
 
 
 
 
e07fdc0
d6bebc4
975305a
d6bebc4
cc5c335
 
 
 
a262720
d6bebc4
a262720
 
 
d6bebc4
a08ccc9
cc5c335
 
 
 
 
 
 
 
 
9dda51c
a262720
 
d6bebc4
 
 
 
 
277d36d
d6bebc4
277d36d
 
9509ab7
308d221
d6bebc4
606fc01
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
from spacy.lang.en import English
import en_ner_bc5cdr_md


from streamlit.components.v1 import html


# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
    st.session_state.visibility = "visible"
    st.session_state.disabled = False

#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")

st.set_page_config(page_title ='Clinical Note Summarization', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -230px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')

## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv('shpi_w_rouge21Nov.csv')
#Loading in Admission chief Complaint and diagnosis
df2 = pd.read_csv('cohort_cc_adm_diag.csv')

#combining both data into one 
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])

df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))


#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
 
 #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)

#Filter selection 
st.sidebar.header("Search for Patient:")

patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox(' ', admissionid) 

# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))

col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")
runtext = ''
inputNote  ='Input note here:'
# Query out relevant Clinical notes
original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
diagnosis =original_text['DIAGNOSIS'].values
reference_text = original_text['Reference_text'].values


##========= Buttons to the 4 tabs ========
col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1])
col6, col7 =st.columns([2,2])
with st.container():
    with col1:
        btnAdmission = st.button("🏥 Admission")
        if btnAdmission:
            #nav_page('Admission')
            inputNote = "Input Admission Note"
    with col2:
        btnDailyNarrative = st.button('📆Daily Narrative')
        if btnDailyNarrative:
            inputNote = "Input Daily Narrative Note"
    with col3:
        btnDischargePlan = st.button('🗒️Discharge Plan')
        if btnDischargePlan:
            inputNote = "Input Discharge Plan"
    with col4:
        btnSocialNotes = st.button('📝Social Notes')
        if btnSocialNotes: 
            inputNote = "Input Social Note"
    with col5:
        btnPastHistory = st.button('📇Past History (6 Mths)')
        if btnPastHistory:          
            inputNote = "Input History records"
            
with st.container(): 
    if btnPastHistory:
        with col6: 
            st.markdown('**No. of admission past 6 months: xx**')
        with col7:
            st.date_input('Select Admission Date')
            
runtext =st.text_area(inputNote, str(original_text2), height=300)


# Extract words associated with each entity
def genEntities(ann, entity):
              # entity colour dict
              #ent_col = {'DISEASE':'#B42D1B', 'CHEMICAL':'#F06292'}
              ent_col = {'DISEASE':'pink', 'CHEMICAL':'orange'}
              # separate into the different entities
              entities = trans_df['Class'].unique()

              if entity in entities:
                             ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
                             entlist = ",".join(ent)
                             st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)
                                                                       

def visualize (run_text,output):
    text =''
    splitruntext = [x for x in runtext.split('.')]
    splitoutput = [x for x in output.split('.')]
    return splitoutput,splitruntext
    

def run_model(input_text):    
    if model == "BertSummarizer":
        output = original_text['BertSummarizer'].values
        st.write('Summary')

    elif model == "BertGPT2":
        output = original_text['BertGPT2'].values
        st.write('Summary')
        
      
    elif model == "t5seq2eq": 
        output = original_text['t5seq2eq'].values
        st.write('Summary')
         
    elif model == "t5":
        output = original_text['t5'].values
        st.write('Summary')
        
    elif model == "gensim": 
        output = original_text['gensim'].values
        st.write('Summary')
        
    elif model == "pysummarizer": 
        output = original_text['pysummarizer'].values
        st.write('Summary')


    st.success(output)

doc = nlp(str(original_text2))
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
ent_html = displacy.render(doc, style="ent", options=options)

col1, col2 = st.columns([1,1])
with col1:
    st.button('Summarize')
    run_model(runtext)
    #sentences=runtext.split('.')
    st.text_area('Reference text', str(reference_text), height=150)
    ##====== Storing the Diseases/Text
    table= {"Entity":[], "Class":[]}
    ent_bc = {}
    for x in doc.ents:
        ent_bc[x.text] = x.label_
    for key in ent_bc:
        table["Entity"].append(key)
        table["Class"].append(ent_bc[key])
    trans_df = pd.DataFrame(table)

with col2:
    st.button('NER')
    st.markdown('**CHIEF COMPLAINT:**')
    st.write(str(AdmissionChiefCom))
    st.markdown('**ADMISSION DIAGNOSIS:**')
    st.markdown(str(diagnosis))
    st.markdown('**PROBLEM/ISSUE**')
    genEntities(trans_df, 'DISEASE')
    st.markdown('**MEDICATION**')
    genEntities(trans_df, 'CHEMICAL')
    #st.table(trans_df)   
    st.markdown('**NER**')
    st.markdown(ent_html, unsafe_allow_html=True)