Spaces:
Build error
Build error
File size: 26,192 Bytes
7a7a355 ef1d0aa a262720 ee8b1e3 a262720 a6cd4f9 ce3763b 914b2c0 ef1d0aa 914b2c0 ef1d0aa e6b122b ef1d0aa a0780a3 00bc252 6f4e679 d6bebc4 6f4e679 00bc252 6f4e679 e081f29 ef1d0aa 6d1fd62 e6b122b d6bebc4 e6b122b ef1d0aa a262720 5e43424 6d1fd62 ee8b1e3 efbc7f6 ee8b1e3 68183e5 ee8b1e3 d2e32eb 00bc252 a262720 d2e32eb a262720 0c78c42 ee8b1e3 81c3f08 ef1d0aa 6d1fd62 ef1d0aa 6d1fd62 a262720 e6b122b 00bc252 e6b122b ee8b1e3 efbc7f6 c1a8888 a262720 ef1d0aa a262720 93b90c5 81c3f08 a763bb2 d6bebc4 a763bb2 ef1d0aa c1a8888 ef1d0aa 6d1fd62 ef1d0aa e081f29 f2ef1d4 ef1d0aa d6bebc4 ef1d0aa d6bebc4 ee8b1e3 add4084 ceb7b45 a2c3ee0 a409e47 a2c3ee0 a409e47 a2c3ee0 a409e47 a2c3ee0 ef1d0aa a2c3ee0 7c19aad a262720 a0780a3 a262720 e07fdc0 a262720 e07fdc0 d6bebc4 e49ec72 975305a ef1d0aa 13f4434 ef1d0aa ceb7b45 ef1d0aa ad1c98b ef1d0aa ad1c98b ef1d0aa ad1c98b ef1d0aa ad1c98b ef1d0aa ceb7b45 ef1d0aa ceb7b45 ef1d0aa a262720 ef1d0aa ceb7b45 ef1d0aa ceb7b45 ef1d0aa ceb7b45 ee8b1e3 a409e47 ceb7b45 db8266b 68183e5 ceb7b45 68183e5 ceb7b45 db8266b ceb7b45 ef1d0aa 3c084a4 ef1d0aa b02e093 7cc40f4 ef1d0aa b02e093 7cc40f4 ef1d0aa b02e093 7cc40f4 ef1d0aa b02e093 ee1ed30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import streamlit as st
import streamlit.components as components
from annotated_text import annotated_text, annotation
from htbuilder import h3
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from negspacy.negation import Negex
from spacy import displacy
from spacy.lang.en import English
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
#import en_ner_bc5cdr_md
import re
from streamlit.components.v1 import html
import pickle
from functools import reduce
import operator
import itertools
from itertools import chain
from collections import Counter
from collections import OrderedDict
### ========== Loading Dataset ==========
## ======== Loading dataset ========
## Loading in Admission Dataset
## df = Admission
## df2 = Admission Chief Complaint and Diagnosis
## df3 = Discharge History
## df4 = Daily Narrative
# #=================================
nlp = spacy.load("en_ner_bc5cdr_md")
df = pd.read_csv('shpi25nov.csv')
df.sort_values(by='SUBJECT_ID',ascending = True, inplace=True)
df2 = pd.read_csv('cohort_cc_adm_diag.csv')
df3 = pd.read_csv('cohort_past_history_12072022.csv')
df3.sort_values(by='CHARTDATE',ascending = False, inplace=True)
df4 = pd.read_csv('24houreventsFulltextwdifference.csv')
#df4.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True)
# Loading in Daily Narrative - refreshed full 24 hr text
df5 = pd.read_csv('24hourevents10Jan.csv')
df5.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True)
#Append the updated 24 hr text and changes column
df5.rename(columns={'hadmid':'HADM_ID',
'DATETIME':'STORETIME'}, inplace = True)
df4 = pd.merge(df4[['HADM_ID','DESCRIPTION','SUBJECT_ID','CHARTTIME','STORETIME','CGID','TEXT','checks','_24_Hour_Events','Full_24_Hour_Events']],df5[['HADM_ID','STORETIME','full_24 Hour Events:','24 Hour Events:']], on = ['HADM_ID','STORETIME'], how = 'left')
hr24event_pattern = re.compile('((24 Hour Events):\\n(?s).*?Allergies:)')
#there are some records with full_24 Hour Events: null, hence replaced these text with the extracted text from the progress note
df4['hr24event_extracted'] = ''
for (idx, row) in df4.iterrows():
try:
text = df4['TEXT'][idx]
df4['hr24event_extracted'][idx] = re.findall(hr24event_pattern,text)
df4['hr24event_extracted'][idx] = [x for x in chain.from_iterable(df4['hr24event_extracted'][idx])]
except:
df4['hr24event_extracted'][idx] = ''
df4 = df4.reset_index(drop=True)
df4['hr24event_extracted'] = df4['hr24event_extracted'].apply(' '.join)
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+[a-z]+:\\n', ' ')
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('24 Hour Events:|24 Hour Events|Allergies:', '')
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+', ' ')
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\.\s+\.', '.')
df4['hr24event_extracted'] = df4['hr24event_extracted'].replace(r"^ +| +$", r"", regex=True)
df4.loc[df4['full_24 Hour Events:'].isnull(),'full_24 Hour Events:'] = df4['hr24event_extracted']
df4.loc[df4['24 Hour Events:'].isnull(),'24 Hour Events:'] = df4['_24_Hour_Events']
# combining both data into one
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
# Deleting admission chief complaint and diagnosis after combining
del df2
# Remove decimal point from Admission ID and format words
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df4['HADM_ID'] = df4['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['INDEX_HADM_ID'] = df3['INDEX_HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3["CHARTDATE_HADM_ID"] = df3["CHARTDATE"].astype(str) +' ('+ df3["HADM_ID"] +')'
df3["DIAGNOSIS"] = df3["DIAGNOSIS"].str.capitalize()
df3["DISCHARGE_LOCATION"] = df3["DISCHARGE_LOCATION"].str.capitalize()
df3["TEXT"] =df3["TEXT"].replace(r'\n',' \n ', regex=True)
df3["TEXT"] =df3["TEXT"].replace(r'#',' ', regex=True)
df3["BertSummarizer"] =df3["BertSummarizer"].replace(r'#',' ', regex=True)
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
df3.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'PAST_Admission_ID',
'INDEX_HADM_ID':'Admission_ID'}, inplace = True)
df4.rename(columns={'HADM_ID':'Admission_ID',
'full_24 Hour Events:':'Full Text',
'24 Hour Events:':'Change_Note',
'past_24 Hour Events:':'Past_Change_Note'}, inplace = True)
df4["Full Text"] =df4["Full Text"].replace('["[','').replace(']"]','')
## ========== Setting up Streamlit Sidebar ==========
st.set_page_config(page_title ='Patient Inpatient Progression Dashboard',
#page_icon= "Notes",
layout='wide')
st.title('Patient Inpatient Progression Dashboard')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -230px;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')
#Filter selection
st.sidebar.header("Search for Patient:")
# ===== Initial filter for patient and admission id =====
patientid = df['Patient_ID'].unique()
patient = st.sidebar.selectbox('Select Patient ID:', patientid) #Filter Patient
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] #Filter available Admission id for patient
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
pastHistoryEpDate = df3['CHARTDATE_HADM_ID'].loc[(df3['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)]
countOfAdmission = len(pastHistoryEpDate)
# List of Model available
#model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
model = 'BertSummarizer'
st.sidebar.markdown('Model: ' + model)
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
diagnosis =original_text['DIAGNOSIS'].values
reference_text = original_text['Reference_text'].values
dailyNoteChange =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()]
dailyNoteFull =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()]
dailyNoteChange.rename(columns={'STORETIME':'Time of Record',
'Change_Note':'Note Changes'}, inplace = True)
#dailyNoteChange['Time of Record'] = pd.to_datetime(dailyNoteChange['Time of Record'])
dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%Y/%m/%d %H:%M')
#dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%d/%m/%Y %H:%M')
dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'] -dailyNoteChange['TimeDiff'].shift()
dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'].fillna(pd.Timedelta(seconds=0))
dailyNoteChange['TimeDiff']= dailyNoteChange['TimeDiff'].dt.total_seconds().div(60).astype(int)
dailyNoteChange['Hour'] = dailyNoteChange['TimeDiff'] // 60
dailyNoteChange['Mins'] = dailyNoteChange['TimeDiff']- dailyNoteChange['Hour'] * 60
dailyNoteChange["TimeDiff"] = dailyNoteChange['Hour'].astype(str) + " hours " + dailyNoteChange['Mins'].astype(str) + " Mins"
del dailyNoteChange['Hour']
del dailyNoteChange['Mins']
dailyNoteChange["PreviousRecord"] = dailyNoteChange["Time of Record"].shift()
dailyNoteChange.sort_values(by=['Time of Record'],ascending = False, inplace=True)
dailyNoteFull.rename(columns={'STORETIME':'Time of Record',
'Change_Note':'Note Changes'}, inplace = True)
dailyNote = df4['Full Text'].loc[(df4['Admission_ID']==HospitalAdmission)]
dailyNote = dailyNote.unique()
try:
mindate = min(dailyNoteFull['Time of Record'])
except:
mindate = ''
# ===== to display selected patient and admission id on main page
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
##========= Buttons to the 3 tabs ======== Temp disabled Discharge Plan and Social Notes
col1, col2, col3 = st.columns([1,1,1])
#col6, col7 =st.columns([2,2])
with st.container():
with col1:
btnAdmission = st.button("🏥 Admission")
with col2:
btnDailyNarrative = st.button('📆Daily Narrative')
with col3:
btnPastHistory = st.button('📇Past History (6 Mths)')
##======================== Start of NER Tagging ========================
#lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying)
def lemmatize(note, nlp):
doc = nlp(note)
lemNote = [wd.lemma_ for wd in doc]
return " ".join(lemNote)
#function to modify options for displacy NER visualization
def get_entity_options():
entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"]
colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'}
options = {"ents": entities, "colors": colors}
return options
#adding a new pipeline component to identify negation
def neg_model():
nlp.add_pipe('sentencizer')
nlp.add_pipe(
"negex",
config={
"chunk_prefix": ["no"],
},
last=True)
return nlp
def negation_handling(note, neg_model):
results = []
nlp = neg_model()
note = note.split(".") #sentence tokenizing based on delimeter
note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
for t in note:
doc = nlp(t)
for e in doc.ents:
rs = str(e._.negex)
if rs == "True":
results.append(e.text)
return results
#function to identify span objects of matched negative phrases from text
def match(nlp,terms,label):
patterns = [nlp.make_doc(text) for text in terms]
matcher = PhraseMatcher(nlp.vocab)
matcher.add(label, None, *patterns)
return matcher
#replacing the labels for identified negative entities
def overwrite_ent_lbl(matcher, doc):
matches = matcher(doc)
seen_tokens = set()
new_entities = []
entities = doc.ents
for match_id, start, end in matches:
if start not in seen_tokens and end - 1 not in seen_tokens:
new_entities.append(Span(doc, start, end, label=match_id))
entities = [e for e in entities if not (e.start < end and e.end > start)]
seen_tokens.update(range(start, end))
doc.ents = tuple(entities) + tuple(new_entities)
return doc
#deduplicate repeated entities
def dedupe(items):
seen = set()
for item in items:
item = str(item).strip()
if item not in seen:
yield item
seen.add(item)
##======================== End of NER Tagging ========================
def run_model(input_text):
if model == "BertSummarizer":
output = original_text['BertSummarizer2s'].values
st.write('Summary')
elif model == "BertGPT2":
output = original_text['BertGPT2'].values
st.write('Summary')
elif model == "t5seq2eq":
output = original_text['t5seq2eq'].values
st.write('Summary')
elif model == "t5":
output = original_text['t5'].values
st.write('Summary')
elif model == "gensim":
output = original_text['gensim'].values
st.write('Summary')
elif model == "pysummarizer":
output = original_text['pysummarizer'].values
st.write('Summary')
st.success(output)
def Admission():
with st.container():
runtext =st.text_area('History of presenting illnesses at admission', str(original_text2)[1:-1], height=300)
lem_clinical_note= lemmatize(runtext, nlp)
#creating a doc object using BC5CDR model
doc = nlp(lem_clinical_note)
options = get_entity_options()
#list of negative concepts from clinical note identified by negspacy
results0 = negation_handling(lem_clinical_note, neg_model)
matcher = match(nlp, results0,"NEG_ENTITY")
#doc0: new doc object with added "NEG_ENTITY label"
doc0 = overwrite_ent_lbl(matcher,doc)
#visualizing identified Named Entities in clinical input text
ent_html = displacy.render(doc0, style='ent', options=options)
col1, col2 = st.columns([1,1])
with st.container():
with col1:
st.button('Summarize')
run_model(runtext)
with col2:
st.button('NER')
# ===== Adding the Disease/Chemical into a list =====
problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
st.markdown('**CHIEF COMPLAINT:**')
st.write(str(AdmissionChiefCom)[1:-1])
st.markdown('**ADMISSION DIAGNOSIS:**')
st.markdown(str(diagnosis)[1:-1].capitalize())
st.markdown('**PROBLEM/ISSUE**')
#st.markdown(problem_entities)
st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
#genEntities(trans_df, 'DISEASE')
st.markdown('**MEDICATION**')
st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
#genEntities(trans_df, 'CHEMICAL')
#st.table(trans_df)
st.markdown('**NER**')
with st.expander("See NER Details"):
st.markdown(ent_html, unsafe_allow_html=True)
alphabets= "([A-Za-z])"
prefixes = "(mr|st|mrs|ms|dr)[.]"
suffixes = "(inc|ltd|jr|sr|co)"
starters = "(mr|mrs|ms|dr|he\s|she\s|it\s|they\s|their\s|our\s|we\s|but\s|however\s|that\s|this\s|wherever)"
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
websites = "[.](com|net|org|io|gov)"
digits = "([0-9])"
def split_into_sentences(text):
# text = str(text)
text = " " + text + " "
text = text.replace("\n"," ")
# text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2} [0-9]{2}:[0-9]{2}:[0-9]{2}"," ")
text = re.sub(prefixes,"\\1<prd>",text)
text = re.sub(websites,"<prd>\\1",text)
text = re.sub(digits + "[.]" + digits,"\\1<prd>\\2",text)
if "..." in text: text = text.replace("...","<prd><prd><prd>")
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
if "”" in text: text = text.replace(".”","”.")
if "\"" in text: text = text.replace(".\"","\".")
if "!" in text: text = text.replace("!\"","\"!")
if "?" in text: text = text.replace("?\"","\"?")
text = text.replace(".",".<stop>")
text = text.replace("?","?<stop>")
text = text.replace("!","!<stop>")
text = text.replace("[0-9]{2}:[0-9]{2}:[0-9]{2}:","[0-9]{2}:[0-9]{2}:[0-9]{2}:<stop>")
text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}","[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}<stop>")
# text = text.replace("-","-<stop>")
# text = text.replace("- -","- -<stop>")
text = text.replace("<br><br>","<stop><br><br>")
text = text.replace("<prd>",".")
sentences = text.split("<stop>")
# sentences = text.split('-')
# sentences = sentences[:-1]
sentences = [s.strip() for s in sentences]
return sentences
def DailyNarrative():
with st.container():
dailyNarrativeTime= st.selectbox('',dailyNoteChange['Time of Record'])
if df4[['Change_Note']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].size != 0:
changeNote = df4[['Change_Note']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].values[0]
else:
changeNote = 'No records'
if dailyNoteChange['TimeDiff'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].empty:
changeNoteTime = 'No records'
previousRecord = ' '
else:
changeNoteTime =dailyNoteChange['TimeDiff'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].values[0]
previousRecord =dailyNoteChange['PreviousRecord'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].values[0]
if dailyNarrativeTime == mindate:
changeNote = 'Nil'
else:
changeNote = str(changeNote).replace('["[','').replace(']"]','').replace("'","").replace('"','').replace(',','').replace('\\','').replace('[','').replace(']','').replace('\\','')
changeNote = changeNote.strip("[-,]").strip("")
changeNote = ' '.join(changeNote.split())
# changeNote_split = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])|-', changeNote)
# changeNote_split = [x.strip(' ') for x in changeNote_split]
changeNote_split = split_into_sentences(changeNote)
changeNote_split = [x for x in changeNote_split if x]
latestRecord = dailyNoteChange['Time of Record'].max()
st.markdown('Changes: ' + changeNote)
st.markdown('Changes recorded from previous record at ' + str(previousRecord) + ' , ' + str(changeNoteTime) + ' ago')
if df4[['Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].empty:
dailyNarrativeText = 'No Records'
else:
dailyNoteChange.sort_values(by='Time of Record',ascending = True, inplace=True)
dailyNoteChange["Combined"] = ''
count = 0
text =''
for index, row in dailyNoteChange.iterrows():
text = '[**' + str(row['Time of Record']) + '**]' + ':<stop> ' + row['Full Text'] + '<br>' + '<br>' + text
dailyNoteChange['Combined'].iloc[count] = text
count = count + 1
dailyNarrativeText =dailyNoteChange[['Combined']].loc[(dailyNoteChange['Time of Record'] == dailyNarrativeTime)].values[0]
#dailyNarrativeText =df4[['Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['DATETIME'] == dailyNarrativeTime)].values[0]
dailyNarrativeText = str(dailyNarrativeText).replace('["[','').replace(']"]','').replace("'","").replace(',','').replace('"','').replace('[','').replace(']','').replace('\\','')
dailyNarrativeText = dailyNarrativeText.strip("[-,]").strip(" ")
dailyNarrativeText = ' '.join(dailyNarrativeText.split())
# dailyNarrativeText_split = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])|-|<br><br>', dailyNarrativeText)
# dailyNarrativeText_split = [x.strip(' ') for x in dailyNarrativeText_split]
dailyNarrativeText_split = split_into_sentences(dailyNarrativeText)
#st.table(dailyNoteChange) # testing to see if data calculate correctly
annt_ls = []
for sent in dailyNarrativeText_split:
if '<br><br>' in sent:
break
else:
end_index = dailyNarrativeText_split.index(sent) + 1
annt_ls.append(sent)
non_annt_ls = dailyNarrativeText_split[end_index:]
with st.expander("See in detail"):
ls = []
for sent in annt_ls:
if sent in changeNote_split:
sent = sent.replace(str(sent),str(annotation(sent)))
ls.append(sent)
else:
ls.append(sent)
ls2 = ls + non_annt_ls
highlight = ' '.join(ls2)
st.markdown(highlight, unsafe_allow_html=True)
def PastHistory():
col6, col7 =st.columns([2,2])
with st.container():
with col6:
st.markdown('**No. of admission past 6 months:**')
st.markdown(countOfAdmission)
with col7:
#st.date_input('Select Admission Date') # To replace with a dropdown filter instead
#st.selectbox('Past Episodes',pastHistoryEp)
pastHistory = st.selectbox('Select Past History Admission', pastHistoryEpDate, format_func=lambda x: 'Select an option' if x == '' else x)
historyAdmission = df3.query(
"Patient_ID == @patient & CHARTDATE_HADM_ID == @pastHistory"
)
if historyAdmission.shape[0] == 0:
runtext = "No past episodes"
else:
#runtext = historyAdmission['hospital_course_processed'].values[0]
runtext = historyAdmission['hospital_course_processed'].values[0]
lem_clinical_note= lemmatize(runtext, nlp)
#creating a doc object using BC5CDR model
doc = nlp(lem_clinical_note)
options = get_entity_options()
#list of negative concepts from clinical note identified by negspacy
results0 = negation_handling(lem_clinical_note, neg_model)
matcher = match(nlp, results0,"NEG_ENTITY")
#doc0: new doc object with added "NEG_ENTITY label"
doc0 = overwrite_ent_lbl(matcher,doc)
#visualizing identified Named Entities in clinical input text
ent_html = displacy.render(doc0, style='ent', options=options)
# ===== Adding the Disease/Chemical into a list =====
problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
if historyAdmission.shape[0] == 0:
st.markdown('Admission Date: NA')
st.markdown('Date of Discharge: NA')
st.markdown('Days from current admission: NA')
else:
st.markdown('Admission Date: ' + historyAdmission['ADMITTIME'].values[0])
st.markdown('Date of Discharge: ' + historyAdmission['DISCHTIME'].values[0])
st.markdown('Days from current admission: ' + str(historyAdmission['days_from_index'].values[0]) +' days')
#st.markdown('Summary: ')
st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Summary: </b></p>', unsafe_allow_html=True)
if model == "BertSummarizer":
if historyAdmission.shape[0] == 0:
st.markdown('NA')
else:
st.markdown(str(historyAdmission['BertSummarizer'].values[0]))
elif model == "t5seq2eq":
if historyAdmission.shape[0] == 0:
st.markdown('NA')
else:
st.markdown(str(historyAdmission['t5seq2eq'].values[0]))
st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Diagnosis: </b></p>', unsafe_allow_html=True)
if historyAdmission.shape[0] == 0:
st.markdown('NA')
else:
st.markdown(str(historyAdmission['Diagnosis_Description'].values[0]))
st.markdown('**PROBLEM/ISSUE**')
st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
st.markdown('**MEDICATION**')
st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
st.markdown('Discharge Disposition: ' + str(historyAdmission['DISCHARGE_LOCATION'].values[0]))
with st.expander('Full Discharge Summary'):
#st.write("line 1 \n line 2 \n line 3")
fulldischargesummary = historyAdmission['TEXT'].values[0]
st.write(fulldischargesummary)
if "load_state" not in st.session_state:
st.session_state.load_state = False
if "button_clicked" not in st.session_state:
st.session_state.button_clicked = False
if "admission_button_clicked" not in st.session_state:
st.session_state.admission_button_clicked = False
if "daily_button_clicked" not in st.session_state:
st.session_state.daily_button_clicked = False
if "past_button_clicked" not in st.session_state:
st.session_state.past_button_clicked = False
if btnAdmission or st.session_state["admission_button_clicked"] and not btnDailyNarrative and not btnPastHistory:
st.session_state["admission_button_clicked"] = True
st.session_state["daily_button_clicked"] = False
st.session_state["past_button_clicked"] = False
Admission()
if btnDailyNarrative or st.session_state["daily_button_clicked"] and not btnAdmission and not btnPastHistory:
st.session_state["daily_button_clicked"] = True
st.session_state["admission_button_clicked"] = False
st.session_state["past_button_clicked"] = False
DailyNarrative()
if btnPastHistory or st.session_state["past_button_clicked"] and not btnDailyNarrative and not btnAdmission:
st.session_state["past_button_clicked"] = True
st.session_state["admission_button_clicked"] = False
st.session_state["daily_button_clicked"] = False
PastHistory() |