File size: 2,615 Bytes
65d7807 9f4ba8d 8af7545 b60c78b 3f3b7d6 b60c78b 36aa3f5 65d7807 de25c83 65d7807 de25c83 65d7807 a796eab 267ab6e 3f3b7d6 65d7807 9263dfd 2402e03 9263dfd 70fb4f0 dbee40e 722e05d 65d7807 9263dfd 9604e0d 722e05d f6a5f9f 65d7807 0e6a636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from huggingface_hub import from_pretrained_keras
from huggingface_hub import KerasModelHubMixin
import transformers
from transformers import AutoTokenizer
import numpy as np
m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def bert_encode(tokenizer,data,maximum_length) :
input_ids = []
attention_masks = []
for i in range(len(data)):
encoded = tokenizer.encode_plus(
data[i],
add_special_tokens=True,
max_length=maximum_length,
pad_to_max_length=True,
truncation = True,
return_attention_mask=True,
)
input_ids.append(encoded['input_ids'])
attention_masks.append(encoded['attention_mask'])
return np.array(input_ids),np.array(attention_masks)
# train_encodings = tokenizer(train_texts, truncation=True, padding=True)
# test_encodings = tokenizer(test_texts, truncation=True, padding=True)
def get_news(input_text):
sentence_length = 110
train_input_ids,train_attention_masks = bert_encode(tokenizer,[input_text],sentence_length)
pred = m.predict([train_input_ids,train_attention_masks])
pred = np.round(pred)
pred = pred.flatten()
if pred == 1:
result = "Fake News"
else:
result = "True News"
return result
tweet_input = gr.Textbox(label = "Enter the tweet")
output = gr.Textbox(label="Result")
descripcion = (
"""
<center>
Demo of the Covid-Twitter Fake News Detection System from my thesis.
</center>
"""
)
iface = gr.Interface(fn = get_news,
inputs = tweet_input,
outputs = output,
title = 'Covid Fake News Detection System',
description=descripcion,
examples=["CDC Recommends Mothers Stop Breastfeeding To Boost Vaccine Efficacy",
"An article claiming that Bill Gates' vaccine would modify human DNA.",
"In the first half of 2020 WHO coordinated the logistics & shipped 😷More than 3M surgical masks 🧤More than 2M gloves 🧰More than 1M diagnostic kits 🥼More than 200K gowns 🛡️More than 100K face shields to 135 countries across the🌍🌎🌏. https://t.co/iz4YQkbSGM",
"Many COVID-19 treatments may be associated with adverse skin reactions and should be considered in a differential diagnosis new report says. https://t.co/GLSeYX2VDq"])
iface.launch() |